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Abstract14

Digital human body models are used to simulate injuries that occur as a result15

of vehicle collisions, vibration, sports, and falls. Given enough time the body’s16

musculature can generate force, affect the body’s movements, and change the risk17

of some injuries. The finite-element code LS-DYNA is often used to simulate the18

movements and injuries sustained by the digital human body models as a result19

of an accident. In this work, we evaluate the accuracy of the three muscle models20

in LS-DYNA (MAT 156, EHTM, and the VEXAT) when simulating a range of21

experiments performed on isolated muscle: force-length-velocity experiments on22

maximally and sub-maximally stimulated muscle, active-lengthening experiments,23

and vibration experiments. The force-length-velocity experiments are included24

because these conditions are typical of the muscle activity that precedes an accident,25

while the active-lengthening and vibration experiments mimic conditions that can26

cause injury. The three models perform similarly during the maximally and sub-27

maximally activated force-length-velocity experiments, but noticeably differ in28

response to the active-lengthening and vibration experiments. The VEXAT model is29

able to generate the enhanced forces of biological muscle during active lengthening,30

while both the MAT 156 and EHTM produce too little force. In response to31

vibration, the stiffness and damping of the VEXAT model closely follows the32

experimental data while the MAT 156 and EHTM models differ substantially. The33

accuracy of the VEXAT model comes from two additional mechanical structures34

that are missing in the MAT 156 and EHTM models: viscoelastic cross-bridges,35

and an active titin filament. To help others build on our work we have made our36

simulation code publicly available.37
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1. Introduction40

Digital human body models (HBM) are used to evaluate the risk of injury41

during low-velocity vehicle collisions [1, 2], from exposure to vibration [3, 4, 5],42

and as a result of athletic accidents [6, 7]. Simulating injury-causing scenarios is43

challenging because the musculature of the body may have time to activate [8],44

altering the ensuing movement [9, 10], and affect the risk of some types of injury.45

When activated, muscle develops tension and its mechanical properties change:46

active muscle can generate large forces in response to modest stretches [11, 12,47

13], and the stiffness and damping (impedance) of active muscle can increase48

substantially [14]. Unfortunately, simulations that involve active-lengthening or49

the vibration of muscle should be approached with caution: few muscle models50

have been evaluated for accuracy during either active lengthening or vibration.51

Nearly all digital HBMs with active musculature use the Hill-type muscle52

models [1, 15, 16, 17, 18, 19] despite the limitations of this formulation. Ritchie53

and Wilkie [20] derived the Hill-type muscle model in 1958 with the aim of54

simulating four experimentally observed phenomena: the variation of isometric55

force with the length of the contractile-element (CE), the variation of CE force with56

velocity, the time-dynamics of muscle force during activation and deactivation, and57

the interaction between the CE and a serially-connected elastic tendon. Within these58

four experimental phenomena Hill-type muscle models have limitations. Most59

Hill-type muscle models are able to capture the force-length-velocity properties of60

maximally activated muscle but not of sub-maximally activated muscle [21, 22].61

Few Hill-type muscle models [23, 24] have been evaluated in the context of active-62

lengthening, particularly at long CE lengths [11], though this comprises half of the63

force-velocity relation.64

Models used to simulate injury are typically evaluated by simulating an entire65

musculoskeletal model rather than evaluating the individual components of the66

model. While it is necessary to examine the accuracy of a musculoskeletal model67

to simulate a particular injury [5, 8, 19, 25], these simulations offer little insight68

into whether individual muscles are being simulated accurately because the corre-69

sponding experimental data is necessarily incomplete: it is not possible to measure70

the three-dimensional boundary conditions and forces of the body’s musculature in71

a living person. Experiments on isolated muscle, in contrast, make it possible to72

control the boundary conditions and measure the forces developed by muscle.73
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While the literature has many simulations of classic muscle physiology ex-74

periments — activation dynamics [26], force-length-velocity relations [27, 28],75

force-depression and enhancement [29] — there are comparatively few works that76

include experiments that are relevant for active-lengthening injury [30, 31] and77

the vibration response [14] of muscle. There are also relatively few works that78

examine the muscle models [32] available in LS-DYNA, a finite-element (FE) code79

that is commonly used to simulate digital HBMs. Our recent simulation study80

[33] shows that there are reasons to be concerned about the accuracy of muscle81

models during simulations of injury and vibration: the simulated forces developed82

during modest [11] and extreme lengthening [12] are lower than experimental83

data, and the response of the model to vibration is more damped than biological84

muscle [14]. There are a wide variety of Hill-type muscle model formulations,85

and so, it is not clear how well the muscle models implemented in LS-DYNA86

will fare when simulating experiments that examine active-lengthening [11], and87

frequency-response1 [14] of muscle.88

In this work, we extend the work of Kleinbach et al. [32] by assessing the89

accuracy of three muscle models in LS-DYNA [34] by simulating four different90

types of experiment: isometric force-length experiments, force-velocity experi-91

ments at short CE lengths, active-lengthening experiments at long CE lengths, and92

the response of the muscle to vibration. The models range in structural complexity,93

from the basic Hill model provided by LS-DYNA [35] (MAT 156), to the extended94

Hill-type muscle (EHTM) model that includes a viscoelastic tendon [32, 36, 27],95

and, finally, to a recently introduced model [33, 37] that includes a viscoelastic96

crossbridge and active titin elements (VEXAT). We simulate experiments to il-97

lustrate both the strengths and weaknesses of muscle models when simulating98

maximal and submaximal force-length, and force-velocity experiments. In addi-99

tion, we include experiments that are specifically relevant for the simulation of100

injury: active lengthening on the descending limb and the response of muscle to101

vibration. Our analysis focuses specifically on the muscle models that are available102

in LS-DYNA [34] because LS-DYNA is commonly used for crash simulation103

and for the simulation digital HBM in general. So that others can extend our104

work we have made the LS-DYNA implementation of the VEXAT model2 and105

benchmarking simulations3 available online.106

1The frequency-response refers to how the gain and phase of an input sinusoid are transformed
by a system (muscle in this case) across a bandwidth of frequencies.

2See the main branch of https://github.com/mjhmilla/Millard2024VEXATMuscleLSDYNA
3See the journal2024 branch of https://github.com/mjhmilla/SingleMuscleSimulationsLSDYNA
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2. Models107

Our benchmark simulations evaluate the responses of three different lumped-108

parameter muscle models in LS-DYNA [34]: MAT 156 [35], EHTM [32, 36, 27],109

and the VEXAT [33] muscle model. These models use a simplified geometric110

representation (Fig. 1A) of the muscle-tendon complexes where all fibers in the111

CE are lumped to one side and are assumed to be identical and act in series with an112

elastic tendon. The geometric model used for pennated muscle has an overall path113

length (ℓP) given by114

ℓP = ℓM cosα + ℓT (1)

where ℓM is the length of the CE, α is the angle between the CE and the tendon115

(Fig. 1A, bottom), and ℓT is the length of the tendon. To mimic the constant116

volume property of muscle [38], the muscle is assumed to have a fixed depth and117

the pennation angle α is varied such that height of the CE118

ℓM sinα = ℓMo sinαo (2)

remains constant, where ℓMo is the length of the CE at which the largest force is119

developed (Fig. 1C), and αo is the pennation of the CE at ℓMo . Where the VEXAT120

model includes a pennation model [33] (Fig. 1A, bottom), both LS-DYNA’s121

MAT 156 and the EHTM can only represent non-pennated muscles (Fig. 1A, top).122

This difference in geometric modeling is of little consequence for the benchmark123

simulations that follow because the muscles simulated have small values of αo
4.124

Each of the muscle models is dimensionless but can be scaled to any muscle-125

tendon complex using its architectural properties: the maximum active isometric126

force (fM
o ), the optimal fiber length (ℓMo )5, the maximum shortening velocity of the127

CE (vM
max), and the slack length of the tendon (ℓTs ). These architectural properties128

are used to scale the curves that have been fit to capture experimentally observed129

relationships: the force-length relation of the tendon [40, 41] (f T, Fig. 1B), the130

active force-length relation [42] (f L, Fig. 1C), the passive force-length relation131

[43] (f PE, Fig. 1D), and the force-velocity relation [44] (fV, Fig. 1E) of the CE.132

The VEXAT model [33] further decomposes f PE into the elastic contributions from133

three smaller structures (Fig. 1F): the extracellular matrix (ECM, f ECM(1
2
ℓ̃ M)),134

titin’s proximal segment (f 1(ℓ̃ 1)), and titin’s distal segment (f 2(ℓ̃ 2)). To facili-135

tate scaling, each of these relations are described in terms of normalized length,136

4All of the benchmarks make use of cat soleus which has a pennation angle of around 7◦ [39].
5The length of the CE at which fM

o is developed during an isometric contraction.
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Figure 1: The models evaluated in this work represent muscle geometrically as a one-dimensional
cable that has a contractile-element (CE) in series with a tendon (A). The CE may act in the same
direction as the tendon (A, top), or at an angle (A, bottom) called the pennation angle. To mimic the
constant volume property of muscle [38], the angle of a pennated CE is varied to have a constant
height which endows the resulting fixed-depth parallelepiped with a constant volume. Muscle
and tendon have a number of non-linear characteristics represented by parametric equations in the
VEXAT [33] and EHTM [32, 36, 27] models: the force-length relation of the tendon (B, which has
a stiffness of k̃To at a tension of fM

o ), the active-force-length relation of the CE (C), the passive
force-length relation of the CE (D, which has a stiffness of k̃PE

o at a passive tension of fM
o ), the

force-velocity relation of the CE (E). We have set the tabular data used by the MAT 156 to follow the
curves of the VEXAT model. The VEXAT model has additional non-linear curves (F) to represent
the force-length relations of extracellular matrix (ECM), the proximal segment of titin, and the
distal segment of titin. When activated, the proximal segment is approximately fixed and, as a result,
the active titin segment appears stiffer when stretched (F). While there are differences between the
parametric equations of the EHTM and the VEXAT models the root-mean-squared-error (RMSE)
of these to models relative to the experimental data is similar (B, C, D, and E).

5



normalized velocity, and normalized force. Throughout this manuscript we use a137

tilde to indicate a normalized quantity: within the CE length is normalized by ℓMo ,138

velocity by vM
max, and force by fM

o ; while tendon length is normalized by ℓTs and139

force by fM
o . In addition, curves are indicated using bold font, for example, the140

force-length relation (f L(ℓ̃M) pictured in Fig. 1C). Although the MAT 156, EHTM,141

and VEXAT models use different parametric equations for the force-length-velocity142

curves (Fig. 1B-C), all of these curves use the same normalization factors and have143

broadly similar shapes. Despite these similarities, each model represents different144

mechanical structures of a muscle-tendon complex.145

LS-DYNA’s MAT 156 includes a stateless two-component model of the CE146

(Fig. 2A 6) and does not include a tendon model. The force (Fig. 2B) developed147

by MAT 156’s CE is the sum of the passive and active components148

f̃M =
(
af L(ℓ̃M)fV(ṽM) + f PE(ℓ̃M)

)
(3)

where a is a 0-1 quantity that represents the level of chemical activation. The curves149

used to describe f L(ℓ̃M), f PE(ℓ̃M), and fV(ṽM) are represented using tabular data150

that set to the VEXAT model’s curves in this work.151

The EHTM includes a viscoelastic tendon (Fig. 2C), a state ℓM, and a differen-152

tial equation for vM that can be numerically integrated forward in time to yield the153

trajectory ℓM(t) [27]. The CE of the EHTM embeds the force-length relation into154

to Hill’s [44] force-velocity relation155

f̃M =
af L(ℓ̃M)− A(a, ℓ̃M, ṽM)ṽM

B(a, ℓ̃M, ṽM)− ṽM
+ f PE(ℓ̃M) (4)

by cleverly formulating the Hill parameters A(a, ℓ̃M, ṽM) and B(a, ℓ̃M, ṽM) to156

create a force-length-velocity curve in which vM
max varies with a similar to biological157

muscle [27]. However, Eqn. 4 cannot be evaluated directly because vM is unknown.158

To solve for vM, it is assumed that the CE and the tendon are in a force equilibrium159

f̃M(a, ℓ̃M, ṽM) = f T(ℓ̃T) + βT(fM, ṽT) (5)

with the viscoelastic tendon (Fig. 2D). To solve for ṽM, most Hill-type formulations160

either solve for ṽM directly and introduce a singularity in the solution [45, 46],161

6The images of the MAT 156 and VEXAT models in Figure 2 have been used under the terms
of the CC-BY license3 and have been modified from the original form [37]. The images in this
figure are also licensed under the terms of the CC-BY licence3. A copy of the license can be found
at https://creativecommons.org/licenses/by/4.0/legalcode
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Figure 2: LS-DYNA’s MAT 156 consists of a CE that is in parallel with an elastic element (A),
such that the total force developed by the model is the sum of the active and passive elements (B).
The EHTM, formulated by Günther et al. [27], extended by Haeufle et al. [36] and implemented
in LS-DYNA by Kleinbach et al. [32], is composed of a CE in series with a viscoelastic tendon
(C). The CE and tendon are assumed to be in a force equilibrium (D) which Günther et al. [27]
solves efficiently by assuming that the tendon damping follows a specific function. The VEXAT
model [33] has a three component CE (viscoelastic XE, an active titin model, and a passive ECM)
in series with a viscoelastic tendon (E). The XE is the only element capable of doing net positive
work (F), the ECM is passive, and the stiffness of the titin element is modified by activation.
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or regularize the equation using an additional damping element which results in162

a nonlinear equation that can only be solved numerically [47]. Instead, Günther163

et al. [27] assumed that the tendon’s damping force βT(fM, ṽT) takes a specific164

form that turns Eqn. 5 into a function that is quadratic in ṽM, making it possible165

to efficiently solve Eqn. 5 directly for ṽM. The EHTM uses power functions to166

describe f PE and f T, exponential functions for f L, and hyperbolas for fV.167

The VEXAT model (Fig. 2E) introduces a lumped viscoelastic crossbridge168

(XE) as well as two-segment active model of titin [33]. This model has a total of169

four states: the XE’s attachment position (ℓS) and velocity (vS), the length of the170

proximal segment of titin (ℓ1), and the length of the CE (ℓM). The tension171

f̃M =

(
af L(ℓ̃M)fV(ṽM)

(
k̃X
o ℓ̃

X + β̃X
o ṽ

X
)

+f 2(ℓ̃ 2) + f ECM(1
2
ℓ̃ M)

)
cosα

−f KE(ℓ̃M)− β̃ ϵṽM (6)

developed by the VEXAT’s CE (Fig. 2F) is dominated by contributions from172

the XE’s stiffness af L(ℓ̃M)fV(ṽM)k̃X
o ℓ̃

X and damping af L(ℓ̃M)fV(ṽM)β̃X
o ṽ

X, the173

distal elastic segment of titin f 2(ℓ̃ 2), and the elasticity of the ECM (f ECM(1
2
ℓ̃ M)).174

The remaining two terms are in place for practical reasons: f KE(ℓ̃M) prevents the175

CE from reaching unrealistically short lengths while β̃ ϵ is small damping added176

for numerical stability. The state derivative of the VEXAT model [33] is evaluated177

directly by assuming that the proximal f 1(ℓ̃ 1) and distal f 2(ℓ̃ 2) segments are in a178

force equilibrium, that the CE and tendon are in a force-equilibrium, and such that179

the XE slowly tracks force of a Hill model (Fig. 2F). The numerous curves in the180

VEXAT model are implemented as Bézier spines.181

3. Benchmark Simulations182

We have selected four experiments to simulate in order to compare and contrast183

the MAT 156 [35], EHTM [32, 36, 27], and VEXAT [33] muscle models: the184

force-length relation of passive and active muscle [48, 49, 50], the force-velocity185

relation on the ascending limb [51] of the force-length relation (ℓ̃M < 1 in Fig. 1C),186

active lengthening on the descending limb [11] of the force-length relation (ℓ̃M > 1187

in Fig. 1C), and the impedance-force7 relation [14]. The benchmark simulations of188

7The impedance of a mechanical component is its stiffness and damping. The active impedance
of muscle increases linearly with active force [14] and is referred to as the impedance-force relation
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force-length and force-velocity relations are included both to serve as a context189

for later simulations and also so that we can evaluate how the models perform190

during submaximal contraction. The active-lengthening and impedance benchmark191

simulations have been included because both of these relations are relevant for192

the simulation of injury. We have intentionally chosen to simulate experiments193

using in-situ cat soleus for two reasons: an in-situ preparation is as close to in-vivo194

conditions as is possible in a lab setting, and there are numerous studies on cat195

soleus that can be used to both fit and evaluate the models.196

3.1. Model Fitting197

Prior to evaluating the accuracy of the models when simulating the force-length,198

force-velocity, eccentric, and impedance of muscle we must fit the parameters of199

each of the models. To simulate these four experiments, we need a total of four cat200

soleus model variants: a model (HL97) fitted to Herzog and Leonard 1997 [51],201

a model (HL02) fitted to Herzog and Leonard 2002 [11], and models (K3, K12)202

to simulate the data from Figures 3 and 12 from Kirsch et al. [14]. To ensure that203

our simulations are as fair as possible, we have fit the models with two aims in204

mind: to match the experimental data as closely as possible such that each model205

has curves (f L(ℓ̃M), f PE(ℓ̃M), and f T(ℓ̃T)) that are as similar as possible. While206

many parameters are identical between the four cat soleus variants, the differences207

that exist are primarily in the architectural properties (ℓMo , fM
o , αo, and ℓTs ) which208

is expected because these experiments were performed on different specimens.209

The parameters for the four different model variants are fitted in four stages:210

first, active and passive force-length parameters are determined for both HL97211

[51] and HL02 [11]; second, force-velocity parameters for all models are set212

using Herzog and Leonard 1997 [51]; third, active titin model parameters are213

set for all VEXAT model variants using Herzog and Leonard 2002 [11]; finally,214

the stiffness and damping of XE is set for the VEXAT model variants K3 and215

K12 using the data in Figures 3 and 12 of Kirsch et al. [14], respectively. Since216

each of these experiments measures only a few properties each model variant uses217

parameters fitted to other studies: the passive force-length, active force-length, and218

titin properties from HL02 are also used in model variants K3 and K12; the force-219

velocity properties of HL97 are used for all other model variants; the XE parameters220

for K3 is applied to the VEXAT model variants HL97, and HL02. Although it is221

unsatisfying to require data from many different experiments this is necessary: no222

in this work.

9



Table 1: The force-length-velocity model parameters applied to model variant HL97. The following
short forms are used in the interest of space: optimal (opt), length (len), maximum (max), isometric
(iso), slack (slk), angle (ang), velocity (vel), initial (init), activation (act), deactivation (deact),
coefficient (coeff), ascending limb of the force-length relation (asc), descending limb of the force-
length relation (des), nonlinear (nonlin), linear (lin), and eccentric (ecc). The source column begins
with a reference for the parameter and is followed by a letter to indicate how the data was used: ‘D’
for directly used, ‘F’ for fit, and ‘C’ for calculated. Parameters τA and τD (*) have not been fitted
because simulations are evaluated under constant activation.

Parameter Value Source
A. Parameters of [51] common to all models

Opt CE len ℓM∗
o 4.80 cm [51]F Appendix A

Max iso force fM∗
o 40.6 N [51]F Appendix A

Tendon slk len ℓTs 3.41 cm [52]C Appendix A
Pennation ang αo 7 ◦ [39]D
Init path len† ℓR∗ 7.18 cm [51]F Appendix A
Act time τA 40 ms *
Deact time τD 80 ms *

B. VEXAT f T(ℓ̃T) Parameters
Strain at fM

o eTo 0.0458 [52]F Appendix A
Damp coeff U 0.0556 [53]F [33]

C. VEXAT f PE(ℓ̃M) Parameters (along CE)
Shift ∆∗ −0.184 ℓMo [51]F Appendix A
Scale s∗ 1.02 [51]F Appendix A

D. VEXAT fV(ṽM) Parameters (along CE)
Max short vel vM

max 2.81 ℓMo s−1 [51]F Appendix B
E. MAT 156 fV(ṽM) Parameters

Max short vel vM
max 2.83 ℓMo s−1 [51]F Appendix B

F. EHTM f T(ℓ̃T) Parameters
Nonlin coeff ∆U∗

SEE,nll 0.0259 [52]F Appendix A
Lin coeff ∆U∗

SEE,l 0.0134 [52]F Appendix A
Force scaling F∗

SEE.0 16.2N [52]F Appendix A
G. EHTM f L(ℓ̃M) Parameters

Asc width ∆W ∗
ASC 0.543 [51]F Appendix A

Asc power coeff ν∗CE,ASC 2.10 [51]F Appendix A
Des width ∆WDES∗ 0.585 [51]F Appendix A
Des power coeff ν∗CE,DES 1.17 [51]F Appendix A

H. EHTM f PE(ℓ̃M) Parameters
Slk len L∗

PEE,0 0.813ℓMo [51]F Appendix A
Scaling F∗

PEE 2.95 [51]F Appendix A
Power coeff ν∗PEE 1.38 [51]F Appendix A

I. EHTM fV(ṽM) Parameters
Hill coeff A Arel,0 0.150 [51]F Appendix B
Hill coeff B Brel,0 0.425 [51]F Appendix B
Ecc force Fe 1.32 [51]F Appendix B
Ecc slope ratio Se 20.1 [51]F Appendix B
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single experiment in the literature contains all of the information required to fit223

all of the parameters of a muscle model. We do not expect the heterogeneous mix224

of parameters to introduce much error since many characteristics are similar from225

one muscle to the next when CE lengths are normalized by ℓMo [54], CE velocities226

by vM
max [55], forces by fM

o [56], and tendon lengths by ℓTs . In the following227

paragraphs we present an overview of the fitting process we have used for this228

work while the technical details can be found in Appendix Appendix A.229

The force-length properties of all of the model variants are set using the data230

from Herzog and Leonard 1997 [51] and 2002 [11]. Both of these studies [51, 11]231

include ramp-lengthening and shortening trials which inherently include a sampling232

of the passive force-length relation, the active force-length relation and the force-233

velocity relation. However, there are 3 experimental parameters that are either234

missing or are uncertain in each study: the optimal CE length (ℓM∗
o ), the maximum235

isometric force (fM∗
o ), the maximum shortening velocity (vM

max), and the path length236

of the muscle that corresponds to the reference length (ℓR∗) of 0mm. Since the237

VEXAT model’s active and passive force-length relations require relatively few238

parameters, we first solve for the experimental parameters (ℓM∗
o , fM∗

o , ℓR∗, vM
max),239

passive force-length parameters (∆∗ and s∗ which shift and scale the f PE(ℓ̃M) of240

the VEXAT model) that best fit of Herzog and Leonard 1997 [51] and 2002 [11]241

simultaneously (see Appendix Appendix A for details).242

Next, the shape of passive and active force-length relations of the EHTM are243

fitted to the data [51, 11]. During the fitting process the values for ℓTs , ℓMo and244

fM
o of EHTM model are set to ℓTs , ℓM∗

o cosαo and fM∗
o cosαo from the VEXAT245

model so that both of these models are as similar as possible when evaluated in246

the direction of the tendon. In addition, the EHTM uses the starting path length247

(ℓR∗) identified using the VEXAT model so that both models are simulated using248

the same boundary conditions (see Appendix Appendix A for details). The fitting249

process produces a set of passive and active force-length parameters for the VEXAT250

and EHTM models for HL97 (see Table 1) and HL02 (see Table 2) variants.251

Now that we have solved for most of the architectural properties (ℓMo , fM
o , and252

ℓTs ) and the force-length relations (f T(ℓ̃T), f L(ℓ̃M), and f PE(ℓ̃M)) of both HL97253

and HL02 we can fit the force-velocity relation to Herzog and Leonard 1997 [51].254

As before, we fit the underlying parametric curves of the VEXAT and EHTM to the255

experimental data [51], and construct the force-velocity relation of MAT 156 by256

numerically sampling the projection of the VEXAT model’s force-velocity curve257

in the direction of the tendon (see Appendix Appendix B for details). The fitted fV258

of all three models has the same maximum shortening velocity in the direction of259

the tendon (see Table 1D-E, Table 2D-E, and Appendix Appendix B) and closely260
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Table 2: The force-length-velocity parameters used for model variants HL02, K3, and K12. All of
the conventions from Table 1 are used in this table. In addition, parameters that differ from Table
1 are highlighted in gray. Since these parameters are for a different cat soleus than Table 1 the
architectural properties differ, as do the properties of the tendon and the passive elasticity of the CE.

Parameter Value Source
A. Parameters of [11] common to all models

Opt CE len ℓM∗
o 4.90 cm [51]F Appendix A

Max iso force fM∗
o 21.6 N [51]F Appendix A

Tendon slk len ℓTs 3.45 cm [52]C Appendix A
Pennation ang αo 7 ◦ [39]D
Init path len† ℓR∗ 8.17 cm [51]F Appendix A
Act time τA 40 ms *
Deact time τD 80 ms *

B. VEXAT f T(ℓ̃T) Parameters
Strain at fM

o eTo 0.0458 [52]F Appendix A
Damp coeff U 0.0556 [53]F [33]

C. VEXAT f PE(ℓ̃M) Parameters (along CE)
Shift ∆∗ −0.0172 ℓMo [51]F Appendix A
Scale s∗ 1.02 [51]F Appendix A

D. VEXAT fV(ṽM) Parameters (along CE)
Max short vel vM

max 2.72 ℓMo s−1 [51]F Appendix B
E. MAT 156 fV(ṽM) Parameters

Max short vel vM
max 2.74 ℓMo s−1 [51]F Appendix B

F. EHTM f T(ℓ̃T) Parameters
Nonlin coeff ∆U∗

SEE,nll 0.0259 [52]F Appendix A
Lin coeff ∆U∗

SEE,l 0.0134 [52]F Appendix A
Force scaling F∗

SEE.0 8.62N [52]F Appendix A
G. EHTM f L(ℓ̃M) Parameters

Asc width ∆W ∗
ASC 0.545 [51]F Appendix A

Asc power coeff ν∗CE,ASC 2.09 [51]F Appendix A
Des width ∆WDES∗ 0.585 [51]F Appendix A
Des power coeff ν∗CE,DES 1.17 [51]F Appendix A

H. EHTM f PE(ℓ̃M) Parameters
Slk len L∗

PEE,0 0.998ℓMo [51]F Appendix A
Scaling F∗

PEE 2.07 [51]F Appendix A
Power coeff ν∗PEE 1.36 [51]F Appendix A

I. EHTM fV(ṽM) Parameters
Hill coeff A Arel,0 0.153 [51]F Appendix B
Hill coeff B Brel,0 0.418 [51]F Appendix B
Ecc force Fe 1.32 [51]F Appendix B
Ecc slope ratio Se 20.1 [51]F Appendix B
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Figure 3: When each of the models is fit using the parameters of HL97, each model has a similar
level of accuracy when compared to the testing data: Rode et al. ([50], RSHB2002), Scott et al.
([48], SBL1996), Rack and Westbury ([21], RW1969). The passive force-length relations (A, D,
and G) reach the strains and stiffness needed to give all three muscle-tendon complexes the same
length and stiffness when f PE = fM

o . Note that the MAT 156’s CE is more compliant than the
other two models because its compliance must match the other two models which have elastic
tendons. Each of the models have a maximally active force-length relation (solid lines in B, E, H)
that follows the testing data closely, though the EHTM deviates where ℓ̃M is outside of the range
0.67− 1.14. The submaximal active force-length relation of each model (dashed lines in B, E, H)
has a peak that deviates from the experimental data. The active force-length relations (B, E, and H)
are created by performing simulations in which the path length of the muscle is held constant while
it is activated (C, F and I).
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follow the experimental data [51] during shortening (Fig. 1E). The eccentric side261

of the VEXAT model’s fV produces less force than the experimental data to make262

room for the force contribution from the active-titin element, which is not included263

in the fV curve of the VEXAT model.264

With the force-length-velocity parameters of all three models fit, we can turn265

our attention to fitting the active-titin and XE viscoelasticity parameters of the266

VEXAT model. The VEXAT’s active-titin model includes 12 parameters (see267

Table 1H of [33] ) most of which are related to the geometry of the titin segment268

and are fixed. There are 2 parameters that we adjust to more accurately simulate269

the tension developed during active lengthening in Herzog and Leonard’s 2002270

[11] study: Q, the point within titin’s PEVK segment that attaches to actin (as Q271

increases from 0 to 1 the resting length of ℓ̃2 becomes shorter and stiffer, see Fig.272

2E), and βPEVK
A , the maximum active damping that is applied between the PEVK273

segment and actin during active lengthening (as βPEVK
A increases, the maximum274

value that β 1(a, ℓ̃1) can reach increases, see Fig. 2F). The error used to fit Q is275

calculated by simulating the 9mm active lengthening trial at 9mms−1 (see Figure276

7B of [11]) and subtracting the peak tension developed by the model from the277

36.6N peak measured force. Since it is time consuming to evaluate this error,278

we used the bisection method to solve for the value of Q = 0.593 that resulted279

in the best agreement with the 9mm trial in Figure 7B [11]. The second active-280

titin parameter βPEVK
A is fit by minimizing the squared error between the force281

generated by the model and the data ([11], 9mm trial in Figure 7B) at 10 evenly282

spaced samples during the 5 seconds after the ramp length-change ends. As with283

the active-titin parameters we used the bisection method to solve for the value284

βPEVK
A = 55.1fM

o (vM
max)

−1.285

The values of the maximum active normalized stiffness (k̃X
o ) and damping (β̃X

o )286

of the XE that best fit Figure 3 and Figure 12 of Kirsch et al. [14] were set to the287

values that appear in Appendix 2, Table 2 of Millard et al. [33]. The gain and288

phase profiles from Kirsch et al. [14] and a linearized version of the VEXAT model289

are used to solve for k̃X
o and β̃X

o under the assumption that XE remains bound to290

actin. During simulation, the XE is not perfectly bound to actin even during full291

activation, and so, this method of fitting k̃X
o and β̃X

o results in a model that will be292

a bit less stiff than desired. We have set VEXAT model variants HL97, HL02, K12293

to the values of k̃X
o and β̃X

o (49.1 fM
o (ℓMo )−1 and 0.347 fM

o (vM
max)

−1) for Figure 12294

of Kirsch et al. [14]. Model variant K3 has the higher stiffness (74.5 fM
o (ℓMo )−1

295

and damping 0.155 fM
o (vM

max)
−1) of the specimen illustrated in Figure 3 of Kirsch296

et al. [14].297
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3.2. Isometric active and passive force-length relations298

Although it is frequently assumed that Hill-type muscle models can reproduce299

the force-length [43, 42] relation, a few details are often overlooked. The shape of300

the force-length relation [42, 57] of whole muscle may differ [58] from the theo-301

retical model derived from the sliding filament theory [59] because the geometric302

path of the fibers in whole muscle can differ from that of a scaled sarcomere. In303

addition, the location of peak isometric force is known to shift to longer lengths304

during submaximal activation [21, 60]. Since we have fit the shape of the passive305

and active force-length relations to Herzog and Leonard 1997 [51] and 2002 [11],306

we evaluate each model against three different data sets [21, 50, 52] one of which307

also includes submaximal activation [21] trials.308

To evaluate the models, we simulate the experiments that are typically used309

to measure the passive and active force-length relations experimentally. The310

passive force-length relation is derived by simulating each muscle as it is passively311

stretched. Next, the model is simulated isometrically beginning from a passive312

state and ending with a sustained activation at a series of path lengths to sample313

the force-length relation. Due to activation dynamics and tendon elasticity, the314

active force of each muscle is sampled after it has been activated long enough to315

converge to its final value. Finally, the active force is evaluated by subtracting off316

the passive-force that corresponds to the final CE length: we cannot use the initial317

passive force since this may differ from the final passive force of the CE due to the318

elasticity of the tendon [50]. In an experiment this last step can only be done if the319

length of the CE or tendon is measured as done by Scott et al. [48].320

All three of the models are able to follow the fitting data and each other closely321

(Fig. 1B-D) and provide similar levels of error when compared to the testing data322

(Fig. 3) for both maximal and submaximal activation. The differences that arise are323

mostly due to the parametric curves used to define f L(ℓ̃M) for the EHTM model:324

for ℓ̃M < 0.57 and ℓ̃M > 0.81 the piece-wise continuous Gaussian function is not325

able to closely follow the data of Scott et al. [48] and leads to a higher RMSE326

than the other models. None of the models show a shift in the peak of the active327

force-length relation with submaximal activation (Fig. 3B,E, and H). This perhaps328

should not be surprising, as none of the models has a mechanism to shift the active329

force-length relation with submaximal activation.330

3.3. Active shortening and lengthening on the ascending limb331

While Hill’s force-velocity relation [44] is embedded in the three models eval-332

uated, this alone is not sufficient to guarantee that each model can capture the333

variation of muscle force with velocity. First, submaximal shortening is often334
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Figure 4: When the force-velocity relation is extracted from isokinetic simulations of each model
under maximal activation (A, B, and C) the results are broadly similar: the shortening side of the
simulated force-velocity relation follows the testing data, while the simulations of the lengthening
side produce much less force than the test data. There are larger differences between the models
when comparing the submaximal force-velocity relation of each model to Joyce and Rack [61]:
the MAT 156, as expected, has a maximum shortening velocity of vM

max (A); the EHTM has a
maximum shortening velocity that is slow compared to the experimental data (B); while the VEXAT
model comes close to matching the experimental data (C). In the time-domain all three models have
similar RMSE values while shortening (D,E,F) and lengthening (G,H, and I), however once the
length change ceases the VEXAT model’s force profile follows the experimental data [51] more
closely than the other models (with the exception of D.). None of the models develops the amounts
force-depression or force-enhancement contained in the experimental data set.
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accompanied by a reduction in the maximum shortening velocity that is not cap-335

tured in the original formulation of Hill’s force-velocity relation [44]. Next, Hill’s336

force-velocity relation [44] only specifies the change in force during shortening337

at a specific length at an instant in time. Since experimental methods to measure338

the force-velocity relation take time, there are time dynamics associated with these339

experiments that are also not captured by the force-velocity relation. Finally, while340

Hill’s force-velocity relation [44] has robustly predicted the tension developed341

during shortening, there is no equivalently consistent model of active lengthening.342

To test the models, we simulate Herzog and Leonard’s 1997 [51] experiment343

in which maximally activated cat soleus undergoes a series of shortening and344

lengthening trials that all end at a reference length of 0mm which corresponds345

to ℓR∗ in (Table 1A). To simulate the experiment, we digitized both the force346

and length profiles ([51], Figure 1A) and configured each model to use the HL97347

parameters (Table 1). The shortening trials begin with each model in a passive state348

and with a path length of ℓR∗ + 4mm. After 1s the model is activated, shortening349

begins at 1.57s and proceeds at the rate (-2.6, -4.9, -9.8, -16.0, and -23.5 mms−1)350

calculated from our digitized data ([51], Figure 1A) until the reference length of351

0mm is reached. From this point on the length of the model is held fixed until a352

time of 4.1s to be consistent with the experiment [51]. The lengthening trials are353

similar except the initial length is ℓR∗ − 4mm and the model is lengthened at the354

rates indicated from our digitized data (2.4, 4.7, 8.8, 13.2, and 21.5 mms−1) until355

the reference length of 0mm is reached.356

The data from these 10 simulations are next transformed into 10 discrete points357

f̃ V∗
i =

fM∗
i

fM∗ (7)

on the force-velocity relation using the force (fM∗
i ) measured during the length358

change, the isometric force (fM∗), and the normalized rate (vM∗
i ) of length change359

ṽ ∗
i =

vM∗
i

ℓM∗
o

. (8)

We compare the simulated normalized force-velocity relation to separate testing360

data that we have manually digitized: Figure 4A8 of Scott et al. [48], Figure 8A9
361

8Which we normalize using vM
max = 4.5ℓMo s−1 as reported on page 211 paragraph 3 of the

results section [48]
9Which we normalize using vM

max = 4.05ℓMo s−1 which is obtained using Equation 10 and the
values of b1/a1 reported in Table 1 [49].
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from Brown et al. [49], and Figure 510 from Joyce and Rack [61]. We make this362

comparison using a normalized force-velocity plot to minimize differences between363

specimens. In addition, we evaluate the root-mean-squared-error (RMSE) between364

the simulated and measured time-series data in two phases: during the length-365

change, and during the time period after the length-change has been completed.366

The maximally activated force-velocity trials show that all three have similar367

force-velocity relations (Fig. 4 A,B, and C), produce comparable forces during the368

length change (Fig. 4 D-I), though with some differences after the length-change369

has ended. The concentric side of the force-velocity relation of each model is370

similar to the measurements of Scott et al. [48], Brown et al. [49], and Joyce and371

Rack [61] while the eccentric side of the force-velocity relation is weaker than the372

datasets. In the time-domain, all three models show similar RMSE values during373

shortening (Fig. 4D-F), and lengthening (Fig. 4G-I). After active lengthening374

(Fig. 4G-I) the VEXAT model has a lower RMSE than either the MAT 156375

or EHTM due to the prolonged force-enhancement caused by the titin element.376

None of the models have the prolonged force-depression (Fig. 4D-F), nor the377

sustained force-enhancement (Fig. 4G-I) reported in Herzog and Leonard’s 1997378

[51] measurements.379

While concentric side of the force-velocity relation are similar between all380

experimental data sets, there are marked differences between the eccentric side381

of the force-velocity relation between the testing data sets [48, 49, 61] and the382

simulated models of which have been fitted (Fig. 1E) to the data of Herzog and383

Leonard 1997 [51]. Scott et al. [48] (Figure 6) provides a reason that might384

explain this difference: when force-velocity measurements are made at longer385

lengths force-enhancement increases. This may explain the difference in force386

enhancement between the data sets since Herzog and Leonard’s experiments [51]387

were performed at an ankle angle of 80◦ (pg 866 paragraph 1 of [51]) which388

corresponds to a length estimated by our model to be 0.75ℓMo (when fully activated)389

while the measurements of Scott et al. [48] were made at 0.9ℓMo (pg 218 paragraph390

1), Brown et al. [49] measured at ℓMo (pg 224 paragraph 1), and Joyce and Rack391

[61] report making measurements at an ankle angle of 70◦ which Scott et al. [48]392

reports is equivalent to 0.9ℓMo .393

To evaluate the sub-maximal force-velocity relations of each model, we repeat394

this entire set of simulations but with the excitation of each model set so that an395

10Which we normalize using vM
max = 186mms−1 which we solved for by fitting Hill’s hyperbola

[44] to the 35 impulses/second trial.
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isometric tension of 0.22fM
o is developed prior to shortening to match one of the396

submaximal trials from Joyce and Rack [61]. Next, we extract the force-velocity397

relation from these sub-maximal simulations, and compare it to the sub-maximal398

force-velocity relation measured by Joyce and Rack [61] from an in-situ cat soleus.399

We have specifically chosen to simulate the sub-maximal trial that begins with a400

tension of 0.22fM
o because the measurements of Joyce and Rack [61] show that at401

this tension the maximum contraction velocity is reduced from vM
max to 0.50vM

max,402

where we have identified 0.50vM
max by fitting Hill’s force-velocity hyperbola [44]403

to the data.404

The simulated submaximal shortening trials show vM
max of the MAT 156 model405

(Fig. 4A) is unaffected by the reduced activation while both the EHTM (Fig.406

4B) and VEXAT (Fig. 4C) models have reduced contraction velocities. The407

submaximal contraction velocity of the VEXAT model (−0.56vM
max) is slightly408

faster than Joyce and Rack’s data [61] (−0.50vM
max) while the EHTM (−0.26vM

max)409

slower. None of the models follows the eccentric-branch of the submaximal force-410

velocity relation: as with the maximal contraction trials, the simulated submaximal411

trials level off during lengthening, while the measurements of Joyce and Rack [61]412

show that the force enhancement continues to increase with the rate of lengthening.413

3.4. Active lengthening on the descending limb414

Higher forces are generated when muscle is actively lengthened on the de-415

scending limb [11] than on the ascending limb [51]. This phenomena has long416

been of interest to muscle physiologists because on the descending limb the value417

of f L(ℓ̃M) is decreasing during active lengthening, and yet the muscle is able to418

develop higher active forces. Muscle models also have had difficulty simulating419

active-lengthening on the descending limb since the active force of most models420

is proportional to f L(ℓ̃M), and so, decreases as the muscle is lengthened beyond421

ℓMo . Since higher forces are generated when active muscle is lengthened on the422

descending limb, this phenomena is also of concern for simulations of injury: as423

tension continues to increase the muscle will be at increasing risk of injury [30],424

while at the same time its enhanced forces may prevent injury to other tissues by425

limiting the range-of-motion of a joint.426

We examine the forces developed by the MAT 156, EHTM, and VEXAT427

models during active lengthening by simulating experiments of Herzog and Leonard428

2002 [11] in which an in-situ cat soleus is actively lengthened on the descending429

limb by 3, 6, and 9mm. To evaluate the accuracy of each model, we compare its430

peak force during lengthening to the experimental data [11] as well as compute431

the RMSE during three phases of the experiment: during the length change, after432
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Figure 5: When the active lengthening experiments of Herzog and Leonard [11] are simulated using
the HL02 model variant, the VEXAT model is able to reproduce the peak in force during the ramp
(A, D, and G) and approximate the decrease in force following the ramp. The MAT 156 and EHTM
models consistently underestimate the experimental data. None of the models is able to produce the
passive force enhancement present in the experimental data (A, D, and G): after deactivation, the
tension of each model returns to passive values while the tension of the cat soleus remains elevated.
Note that the VEXAT model’s titin element was fitted to the 9mms−1 (D and E) trial, and so the
3mms−1 (A and B) and 27mms−1 (G and H) are test data.
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the length change, and finally after the muscle has been deactivated. For these433

simulations we make use of the HL02 parameters (Table 2) which have been434

fit to the passive force-length, active force-length, and force-velocity data that435

is embedded in the time-series data of Herzog and Leonard (see Figures 7A-C436

of [11]). Since Herzog and Leonard’s 2002 experiment [11] is well below the437

threshold of injury [30, 62], we also simulate the forces that are developed when438

the muscles are stretched by 52mm and compare the forces developed to the439

thresholds of active-lengthening injury [30, 62]. Unfortunately, we cannot directly440

replicate Hasselman et al.’s experiments [30] because the data needed to fit the441

models to Hasselman et al.’s specimens are not reported. As a result, we cannot442

compare the forces developed during injury to experimental data but can only make443

a comparison between the models.444

The VEXAT model more accurately reproduces the force-profiles of the in-445

situ cat soleus during and after the 3mms−1 (Fig. 5A), 9mms−1 (Fig. 5D), and446

27mms−1 (Fig. 5G) than either the MAT 156 or EHTM models (see Appendix447

Appendix C Figs. C.10 and C.11 for the 6mm and 3mm trials). Once the model448

is deactivated, however, all of the models produce comparable forces and fail to449

produce the passive force-enhancement that is present in the experimental data450

[11]. When the ramp force profile is resolved in a normalized force-length space,451

the two-phase nature of the force enhancement is visible across each of the trials452

(Fig. 5C, F, and I): initially force develops rapidly during the ramp up to a force of453

1.25−1.30fM
o is reached, afterwards force continues to increase but at a lower rate.454

While all three models show the initial rapid force development, only the VEXAT455

model’s tension follows the experimental data [11] and continues to increase during456

the active-lengthening trial (Fig. 5C, F, and I).457

The VEXAT model is able to develop enhanced forces during active lengthening458

due to the active-titin element (Fig. 2E and F). When activated, a point within459

the VEXAT model’s titin segment becomes viscously bound to actin (Fig. 2E and460

F). As a result, the length of the proximal titin segment is approximately constant461

while the distal titin segment bears most of the strain and produces enhanced forces462

(Fig. 1F). After the ramp completes, the enhanced tension developed in titin’s463

distal segment relaxes as the viscous titin-actin bond slowly slides in response to464

the force imbalance until the enhanced force has completely dissipated (Fig. 6A, D465

and G). The passive force enhancement that is present in the experimental data [11]466

suggests that (using the VEXAT model to interpret the data) the force imbalance467

between the proximal and distal segments of titin should not completely dissipate.468

Both the MAT 156 and EHTM models also develop enhanced forces during active469

lengthening due to the force-velocity and passive-force length relations though470
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Figure 6: When the active-lengthening simulations (Fig. 5) are extended from 9mm to 52mm each
of the models develops tension sufficient to pass through the mild, major, and rupture thresholds of
active-lengthening injury [30, 62] though each model passes through these thresholds at different
lengths. The VEXAT model passes through these thresholds at the shortest lengths of all three
models because the active titin element allows it to develop active force even as f L(ℓ̃M) goes
to zero [33], mimicking a surprising property of muscle [12]. Since the titin-actin bond of the
VEXAT model is an activation dependent damper, velocity matters: during the 3mms−1 trial
(A) the VEXAT model reaches each injury threshold at longer lengths than the 9mms−1 (B) and
27mms−1 (C) trials. The MAT 156 and EHTM models, in contrast, pass through the thresholds of
injury at nearly the same lengths regardless of velocity because these models can only generate
passive force beyond actin-myosin overlap. Note that the MAT 156 develops less passive force
than the reference areas in grey (the VEXAT’s active and passive force-length curves) because the
MAT 156 has a rigid tendon, and so, its CE has been made to have the same compliance of the CE
and tendon of the other models.
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these mechanisms alone are insufficient to produce the enhanced forces present in471

the experimental data (Fig. 5A, D, and G). The force contribution of titin is even472

more prominent in fiber-level experiments of stretch-shortening [63] and extreme473

active lengthening [12] to the point of fiber-rupture.474

Titin’s simulated force contribution becomes more pronounced when the active-475

length change is increased to cause injury. When the length change is extended476

from 9mm to 52mm at 3, 9, and 27mms−1 (Fig. 6A, B, and C) the VEXAT model477

passes through the thresholds of injury before the EHTM and MAT 156 models478

(Fig. 6D, E, and F) at each speed. During the 3mms−1 trial the titin-actin bond479

has enough time to slip, and so, the VEXAT model passes through the thresholds480

for major injury and rupture at nearly the same normalized lengths as the EHTM481

(Fig. 6A). The 9 and 27mms−1 are quick enough that the titin-actin bond stays482

nearly fixed in place and, as a result, the VEXAT model passes through all injury483

thresholds at shorter normalized lengths than either the EHTM or MAT 156 models484

(Fig. 6B, and C). Since the the CE of the MAT 156 has the lowest stiffness11, and485

lacks a titin element, it passes through the thresholds for injury at much longer486

normalized lengths than either model or the reference force-length curves (Fig. 6,487

reference curves in grey). The EHTM passes through the thresholds of injury at488

shorter normalized lengths than the reference force-length curves (Fig. 6) because489

its passive force-length relation follows a power function whereas the VEXAT and490

MAT 156 models have a passive force-length relation that eventually becomes491

linear.492

The difference in force development between the models during long active493

stretches can affect musculoskeletal simulations of injury. The larger forces devel-494

oped by the VEXAT model can have two consequences: first, the VEXAT model495

will pass through the thresholds of injury at lower strains and become injured496

more quickly; second, the enhanced forces developed by the VEXAT model may497

protect the tissues of the joint it crosses by reducing the movement of the joint.498

The amount of force enhancement provided by the VEXAT model will vary with499

the titin isoform of the muscle and the stiffness of the ECM: shorter isoforms500

of titin will produce larger forces than longer isoforms (making the active titin501

force-length relation stiffer in Fig. 1F), while the difference between active and502

passive force-development will decrease as the ECM becomes stiffer (making both503

the active and passive titin force-length relations less stiff in Fig. 1F). In these504

11The MAT 156 has been fitted to have the same stiffness as the VEXAT model’s CE and tendon
in series.
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simulations, we have used titin parameters from a human soleus titin [64] which505

has a long titin isoform, and the average of the titin and ECM contributions (56%506

ECM and 44% titin [33]) measured by Prado et al. [65] from rabbit skeletal muscle.507

Shorter isoforms of titin would be stiffer than the long isoform of titin we modelled508

[33]. Since Prado et al.’s measurements [65] of the relative contribution of titin and509

the ECM to the passive force-length relation are unique, we cannot know at this510

point in time if the relative contributions of titin and the ECM that we are using is511

appropriate for human skeletal muscle.512

3.5. Active impedance of muscle513

The active impedance of muscle increases linearly with active tension [14], a514

property that is exploited by the central-nervous-system (CNS) when learning new515

movements [66], to interact with mechanically unstable environments [67], and516

to reduce noise [68]. Muscular impedance is likely also important to accurately517

simulate the response of the body to vibration and ultimately to estimate vibration518

discomfort and motion sickness [5]. Since active muscular impedance can be repre-519

sented as a stiff spring in parallel with a light damper [14] muscle impedance also520

contributes to the increase of force that is observed [11] during active lengthening.521

Active muscle impedance [14] differs from short-range stiffness [69]. Rack522

and Westbury [69] coined the term short-range stiffness to describe a specific523

observation: during sufficiently small and rapid changes in length the change in524

force measured in active muscle is linear and independent of velocity. The stiffness,525

in short-range stiffness, is the ratio of force-change to length-change [69] during526

these small rapid length changes. In contrast, the impedance of muscle applies to527

the case when the changes in length and muscle force can be accurately reproduced528

using a linear time-invariant (LTI) system. LTI systems in the mechanical domain529

can include springs and dampers which produce force responses that are velocity530

dependent, and so, apply to a larger range of perturbations than short-range stiffness.531

The work of Kirsch et al. [14] showed that muscle under constant activation532

responds like a spring-damper in parallel to perturbations across a variety of533

bandwidths12 and amplitudes13. At frequencies lower than 4Hz, Kirsch et al. (see534

Figure 3B, [14]) found that the linear association between the length change and535

force output decreased — as quantified by the coherence-squared between the536

124− 15Hz, 4− 35Hz, and 4− 90Hz
13±0.4mm, ±0.8mm, ±1.6mm and ±6mm were evaluated which amounts to ±0.9%ℓMo ,

±1.9%ℓMo , ±3.7%ℓMo and ±14%ℓMo for a 42.9mm cat soleus
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Figure 7: System identification methods can be used to identify a network of spring-dampers
that best fits the response of muscle provided it can be treated as a linear time-invariant system.
This process begins by constructing a stochastic bandwidth-limited length-change signal in the
time-domain (A, blue line). Next, these length changes are applied to a muscle that is held at
a constant nominal length and under constant stimulation (A, black line). These signals can be
transformed from the time-domain (B) into an equivalent series of scaled and shifted sinusoids in
the frequency-domain (C). The frequency-domain representation of both the input length-change
and output force-response of muscle can be used to measure the relative amplitude (gain) and
timing (phase) of the two signals (D).
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input and output ([70], pg. 137) — indicating that it was no longer appropriate to537

approximate the response of the muscle as an LTI system.538

Approximating muscle as an LTI system makes its possible to identify an539

underlying set of equations and parameters that best fit the response of muscle over540

a bandwidth of frequencies. Kirsch et al.’s [14] experiments began by applying541

a small amplitude stochastic signal to vibrate the length of the active muscle542

causing it to generate a corresponding force response. Next Kirsch et al. [14]543

applied system identification methods to identify an LTI system that best captured544

how the muscle transformed the length changes into force changes during the545

experiments. To create the stochastic input signals Kirsch et al. [14] created546

a pseudorandom sequences of numbers between ±1, filtered the signal using547

a second-order Butterworth filter (with −3dB frequencies of 15Hz, 35Hz, and548

90Hz), and scaled the result (±0.4mm, ±0.8mm, and ±1.6mm) to the desired549

amplitude (Fig. 7A14 in blue). Next, the input and output signals are transformed550

into equivalent signals in the frequency-domain using a Fourier transform [71].551

A Fourier transform [71] decomposes time-domain signals (Fig. 7B) into an552

equivalent series of sinusoids (Fig. 7C) that vary in frequency, scale, and phase but553

when summed together produce the original time-domain signal. As long as the554

muscle behaves like an LTI system there is a linear relationship between the input555

and output signals in the frequency-domain: the output will consist of the same set556

of sinusoids as the input except each sinusoid may have had its amplitude (gain)557

and phase-altered (Fig. 7D). The gain and phase-response (collectively known as558

the frequency-response) of an LTI system describes how the system transforms559

an input sinusoid to an output sinusoid (Fig. 7E and 7F show that a 1mm 35Hz560

input sinusoid will be transformed by the active muscle into a 4.9N, 35Hz output561

sinusoid that with a phase shift of 25◦ relative to the input). Kirsch et al. [14]562

used the pattern of phase and gain responses across a broad range of frequencies to563

identify that a parallel spring-damper fits the response of muscle under constant564

activation. As the methods required to do this analysis are involved, we refer the565

curious reader to additional reference material ([33], Section 3.1 and Appendix D)566

and source code15 for further information.567

To evaluate the impedance of the models we simulate the experiments of Kirsch568

et al. [14] and compare the time-domain response, frequency-domain response, and569

14This figure is being used under the terms of the CC-BY license3 [33]. A copy of the license
can be found at https://creativecommons.org/licenses/by/4.0/legalcode

15See main SystemIdentificationExample.m in the eLife2023 branch of https://github.
com/mjhmilla/Millard2023VexatMuscle
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J. K. L.

Figure 8: When the K3 variant is used to simulate Kirsch et al.’s [14] 1.6mm− 90Hz experiment
there are marked differences between each model. In the time-domain the VAF (A, B, and C) shows
that the MAT 156 and EHTM have VAF values that are below the range of 78-99% reported by
Kirsch et al. [14], while the VEXAT (C) model has a VAF that is within this range. Similarly, in
the frequency domain both the gain-response (D, E, and F) and phase-responses (G, H, and I) of the
MAT 156 and EHTM deviate more from the experimental data [14] than the VEXAT model. We
have taken care only analyze data for which the coherence-squared (a measure of linearity) exceeds
0.67 (J, K, and L) to be consistent with Kirsch et al.’s implied threshold ([14], Figure 3). While
both the VEXAT model (L) and Kirsch et al.’s data [14] maintain a coherence-squared above the
threshold for all frequencies above 4Hz, neither the MAT 156 (J) nor EHTM (K) can meet this
threshold at such low frequencies.
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the impedance-force relation to the data of Kirsch et al. [14]. In the time-domain,570

Kirsch et al. [14] note that a fitted spring-damper will have a variance-accounted-571

for (VAF)572

V AF (fKD, fEXP ) =
σ2(fEXP)− σ2(fKD − fEXP )

σ2(fEXP )
. (9)

of between 78−99% for the cat soleus (60 trials) and medial gastroc (50 trials). We573

evaluate the time-domain response of each of the models by fitting a spring-damper574

to the response of each model and evaluate the VAF in the time domain to the575

±1.6mm− 15Hz and to the ±1.6mm− 90Hz length change trials ([14], Figure 3).576

Using the response to the same ±1.6mm− 15Hz and ±1.6mm− 90Hz trials we577

evaluate the frequency-domain response by computing the RMSE between each578

model’s response and Kirsch et al.’s data ([14], Figure 3) of the phase-response and579

gain-response. For these simulations we use the K12 model variant (Sec. 3.1) in580

which the viscoelasticity of the VEXAT’s XE has been fitted to Kirsch et al.’s [14]581

Figure 3. When evaluating the frequency-domain response, we consider only the582

data above 4Hz and with a coherence-squared value of above 0.67 to be consistent583

with Kirsch et al. [14] (see the coherence-squared plot in Figure 3 of [14]). Next,584

we measure the response of each model to a 15Hz − 0.8mm perturbation as the585

active force developed by the model is linearly increased from 1− 12N across a586

series of 10 trials. Model variant K3 (Sec. 3.1) is used for these simulations, where587

Figure 12 from Kirsch et al. [14] has been used to fit the viscoelasticity of the588

VEXAT’s XE. We fit a parallel spring-damper to each model’s frequency-response589

and compare how stiffness and damping vary with active force in comparison to590

Kirsch et al.’s data [14].591

In the time-domain and frequency-domain the accuracy of each model differs592

depending on whether the ±1.6mm− 90Hz or the ±1.6mm− 15Hz perturbation593

is applied. In response to the ±1.6mm − 90Hz perturbation, the VAF of the594

VEXAT model (86%, Fig. 8C) outperforms both the MAT 156 (63%, Fig. 8A)595

and EHTM (60%, Fig. 8B) models. In the frequency domain, the RMSE of the596

VEXAT model is lower in both gain and phase (1.19Nmm−1 and 9.19◦, Fig. 8F)597

than either the MAT 156 (4.81Nmm−1 and 49.32◦, Fig. 8D) or EHTM models598

(2.61Nmm−1 and 20.49◦, Fig. 8E). While VEXAT model’s coherence-squared599

values (Fig. 8L) remained well above the threshold of 0.67 at frequencies of 4Hz600

and higher (Fig. 8L), the lowest frequencies analyzed had to be raised for both601

the MAT 156 (28Hz, Fig. 8J) and EHTM (12.4Hz, Fig. 8K) models meet the602

coherence-squared threshold.603
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A. Stiffness (0.8mm 35 Hz) B. Stiffness (0.8mm 35 Hz) C. Stiffness (0.8mm 35 Hz)

D. Damping (0.8mm 35 Hz) E. Damping (0.8mm 35 Hz) F. Damping (0.8mm 35 Hz)

Figure 9: When Kirsch et al. [14] repeatedly applied perturbations (0.8mm− 35Hz) across a range
of nominal forces (but with the same nominal length ℓMo ) they observe that the stiffness (A, B, and
C) and damping (D, E, and F) coefficients of best fit vary linearly with active force (see Figure 12
of [14]). Simulating this experiment using the K12 variant of each model shows that each model
has distinct changes in stiffness and damping with nominal force. The MAT 156 model has a very
low stiffness does not change with active force (A), while its damping increases more rapidly than
the data [14] as active force increases (D). In contrast, both the stiffness (B) and damping (E) of
the EHTM are much larger than the data. The VEXAT model closely follows the stiffness (C) and
damping (F) data.
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Although the accuracy of each model’s response to the ±1.6mm− 15Hz trial604

(Appendix Appendix D, Fig. D.12) differ, when ranked by accuracy the result605

is similar to the ±1.6mm − 90Hz trial. In the frequency-domain, the VEXAT606

model has a lower RMSE (0.32Nmm−1 and 15◦) with Kirsch et al.’s data [14]607

(Figure 3 [14]) than either the MAT 156 (0.55Nmm−1 and 46.24◦) or EHTM608

(1.63Nmm−1 and 22◦) models. However, the response of the MAT 156 to the609

±1.6mm − 15Hz trial has a higher VAF (77%) than either the EHTM (38%) or610

VEXAT (69%) models. All three models have sufficiently high coherence-squared611

values so that all data between 4− 15Hz is included in the analysis.612

The impedance-force relation of the VEXAT model (Fig. 9C and F) is similar613

to Kirsch et al.’s data [14] while the impedance-force relations of the MAT 156614

(Fig. 9A and D) and EHTM (Fig. 9B and E) differ. Since the length of the muscle615

is ℓMo on average (where ∂f L(ℓ̃M)/∂ℓ̃M = 0), the stiffness of the MAT 156 is close616

to zero as would be expected from the derivative of Eqn. 3. The damping of the617

MAT 156, in contrast, increases with force at four times rate of Kirsch et al.’s data618

[14]. In contrast, the EHTM’s response is quite different from the MAT 156. The619

elastic tendon and modified formulation of the EHTM allow it to produce stiffness620

(Fig. 9B) and damping (Fig. 9E) responses that are larger than Kirsch et al.’s data621

[14]. These differences show up clearly in the RMSE stiffness and damping values622

from the VEXAT (0.55Nmm−1 and 0.008N/(mm/s)), EHTM (5.74Nmm−1 and623

0.018N/(mm/s)), and MAT 156 (3.42Nmm−1 and 0.067N/(mm/s)) models (Fig.624

9).625

While the results we have found here differ strongly between the models, there626

is reason to expect that these results are sensitive to both the nominal length of627

the CE and the perturbation. The MAT 156 is a rigid tendon Hill-type muscle628

model, and as such, the active stiffness of this model depends on the nominal629

length of the CE: on the ascending limb a rigid-tendon Hill-type muscle model630

will have positive stiffness, at the optimal CE length the stiffness will go to zero,631

while on the descending limb the stiffness can become negative. The addition of632

an elastic tendon is likely the factor that gives the EHTM an improved response633

in comparison to the MAT 156, as this pattern has also been observed in between634

other rigid-tendon and elastic-tendon Hill-type muscle models [33] (see Figure 7).635

The stiffness and damping coefficients of the VEXAT model will also be affected636

by the nominal length, since the f L(ℓ̃M) relation is multiplicative with the force637

developed by the XE in Eqn. 6.638

Kirsch et al. [14] also observed that the stiffness and damping of best fit varies639

with both the frequency and amplitude of the perturbation (see Figure 3, 9, and640

10 of [14]). While it is not yet clear what mechanism is responsible for this shift,641
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there is a chance that this phenomena is tied to the cycling rate of cross-bridges:642

the 90Hz length perturbation is likely close to the cross-bridge cycling rate16, while643

15Hz length perturbation is probably slower. At this point in time it is not clear644

what mechanism is responsible for this sensitivity to the perturbation, and so, it’s645

unlikely that any of the models evaluated would display the same pattern.646

4. Discussion647

Simulating injury using digital HBM’s is complex because of the wide variety648

of factors that can affect the calculated risk of injury. During a vehicle collision649

[75], athletic injury [6, 7], or in response to vibration [5], the body’s musculature650

may have time to activate, alter the movements of the body, and change the risk651

of injury. In this work, we have evaluated the accuracy of three different muscle652

models in LS-DYNA by simulating laboratory experiments that examine the force-653

length-velocity relations during maximal and submaximal activation, the response654

of muscle to active-lengthening, and the frequency-response of muscle. We have655

chosen to use the FE code LS-DYNA for our benchmark because LS-DYNA is656

frequently used to simulate injury sustained as a result of vehicle collisions [1, 2]657

and sporting accidents [7].658

Our benchmark simulations are necessarily limited by the experimental data659

available on passive and active-lengthening injury from the muscle physiology660

literature. Passive and active-lengthening injuries have been measured in rabbit661

muscles [30, 31] and used by Nölle et al. [62] to define the thresholds of passive662

and active-lengthening injury which we use in this work (Fig. 6). Unfortunately663

the works of Noonan et al. [62] and Hasselman et al. [30] do not contain the664

information needed to accurately fit a model and simulate the experiments, and665

so, we are left without an experimental reference for the simulations of active-666

lengthening injury that appear in Sec. 3.4. Even if the works of Noonan et al. [62]667

and Hasselman et al. [30] could be simulated, these studies may not be a good668

reference for the lengthening-injury characteristics of human skeletal muscle since669

Persad et al. ([76], Figure 6) recently illustrated that whole muscle in rabbits is far670

16In-vitro measurements have been made of myosin filaments sliding at 3 − 4µms−1 [72]. If
each cross-bridge produces a step of 11nm [73] then we have a total of 273 − 364 cycles per
second coming from the 98 [74] cross-bridges per half-myosin (assuming all cycles have the same
step-lenth). Since the duty cycle ranges from 0.07 [73] under low-load up to 0.2-0.4 under isometric
conditions we are left with a range of estimated cross-bridge cycling rates that vary between
19− 146Hz.
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stiffer than whole muscle in humans. Due to the limited data on length-injury our671

benchmark can only make relative comparisons between models.672

Although the experiments that measure the frequency-response of muscle673

[14] are more amenable to simulation than the lengthening injury experiments674

[30, 62], there are still a number of important experimental gaps that remain to675

be filled. Kirsch et al. [14] measured the frequency-response of cat soleus and676

medial gastrocnemius at the optimal fiber length, while the frequency-response677

of the ascending and descending limbs of the force-length relation have yet to be678

measured. Sugi and Tsuchiya [77] did measure the gain of frog skeletal muscle at679

a specific frequency during both shortening and lengthening, but did not measure680

the corresponding phase-shift. While the measurements of Kirsch et al. [14] are681

invaluable, there are still many open questions in regards to the frequency-response682

of muscle, and a sparse amount of experimental data in the literature.683

The results of our benchmark simulations complement and extend prior work684

of Kleinbach et al. [32]. Kleinbach et al. [32] evaluated the activation dynamics,685

the force-length relation, and the concentric-force-velocity (quick-release) relation686

of the EHTM and MAT 15617 models using data from a piglet plantarflexors [27]687

(force-length-velocity), cat soleus [78] (activation dynamics), and rat gastrocnemius688

[79] (activation dynamics). Briefly, Kleinbach et al. [32] showed that the EHTM689

closely followed the experimental force-length data, more accurately captured690

the data from the quick-release experiment [27] than the MAT 156, and found691

Hatze’s [80] activation dynamics models to be more accurate than Zajac’s [45]. We692

have found that the force-length relation of the EHTM closely matched the fitting693

data set [11, 51] (Fig. 1C) but deviated from the testing data set [21, 48, 50] at694

short CE lengths, and during submaximal activation (Fig. 3E) similar to the other695

models. In contrast to Kleinbach et al. [32], our simulations of the isokinetic force-696

velocity experiments using a cat soleus [51] found that the EHTM and MAT 156697

produce similar results (Fig. 4), though the EHTM does have a lower RMSE698

than the MAT 156 during the ramp trial. The difference between the EHTM699

and the MAT 156 may have been more pronounced during Kleinbach et al.’s700

[32] simulations because the tendon-to-CE length ratio is higher for the piglet701

plantarflexor (ℓTs /ℓ
M
o = 3 [32]) than for a cat soleus (ℓTs /ℓ

M
o = 0.71 [52]). We702

have not included activation dynamics in the benchmark, as was done by Kleinbach703

et al. [32], but instead have simulated experiments in which activation is held704

constant so that our results do not depend on the activation model.705

17The EHTM was compared to the MAT 156 only during the quick-release experiments.
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The benchmark simulations in this work also complement and extend our706

previous work [33]. Here we have evaluated the force-length (Fig. 3) and force-707

velocity (Fig. 4) relations using a broader set of experimental data than our708

previous work [33], and across both maximal and submaximal activation. While709

our previous work also includes simulations of active lengthening [33], here we710

have simulated a greater selection of the trials (Figs. 5, C.10, C.11) measured by in711

Herzog and Leonard [11], and simulated active lengthening injury (Fig. 6). Finally,712

across all benchmark simulations we have evaluated the MAT 156 [35] , EHTM713

[32, 36, 27], and the Fortran implementation of the VEXAT model, none of which714

were considered in our previous work [33]. What is similar between this benchmark715

and our previous work [33] is that we compared the VEXAT model against a Hill-716

type muscle model: previously we evaluated a damped-equilibrium Hill model717

[47] while here we have focused on the MAT 156 and EHTM models. Even718

though the mathematical formulations of the damped-equilibrium [47], MAT 156719

[35], and EHTM [32, 36, 27] are substantially different, when simulated, these720

formulations share some of the same characteristics: tension is underestimated721

during active-lengthening on the descending limb; both the MAT 156 and rigid-722

tendon damped-equilibrium model [33] are too compliant and too damped at ℓMo723

(compare Fig. 9A and D to Figure 7C and D from [47]); and while both the EHTM724

and elastic-tendon damped equilibrium model [33] have positive stiffness and725

damping at ℓMo these values are large in comparison to Kirsch et al.’s [14] data726

(compare Fig. 9B and E to Figure 7B and D from [33]). Despite the differences727

in formulation, the active-lengthening and frequency-response of the rigid-tendon728

Hill models are similar, as are the responses of elastic-tendon Hill models.729

In this work, we have evaluated three muscle models that can be used in LS-730

DYNA: the MAT 156 model, a Hill-type CE model; the EHTM model, a Hill-type731

muscle model that includes a viscoelastic tendon; and the VEXAT model, a model732

that includes an active-titin element and a viscoelastic CE. While all three models733

performed similarly in the force-length and ascending limb force-velocity bench-734

mark simulations, we found substantial differences during the descending limb735

active-lengthening, and frequency-response benchmark simulations. Consistent736

with previous work, Hill-type muscle models that lack an active-titin element will737

underestimate the force developed by the CE during active lengthening during738

modest (Fig. 5) and long stretches (Fig. 6). Muscles that underestimate active-739

lengthening forces may produce HBM’s that have a higher risk of injury than740

reality: compliant muscles will allow joints to bend excessively, perhaps injur-741

ing ligaments, that would otherwise be protected by stiffer muscles. Similarly,742

Hill-type muscle models have a frequency-response that differs substantially from743
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experimental data [14]. When the response of a muscle model to vibration differs744

widely from experimental data so too will an HBM that uses these muscle models.745

While the VEXAT model performs better than either the MAT 156 or EHTM746

during simulations of active-lengthening or in response to vibration, our work747

indicates that the performance of the model during submaximal force-length (Fig.748

3H) and force-velocity simulations can be improved (Fig. 4C).749

5. Conclusions750

While the MAT 156, EHTM, and VEXAT muscle models in LS-DYNA have751

comparable force-length and force-velocity relations, these models differ during752

active-lengthening on the descending limb and in response to vibration. During753

active-lengthening on the descending limb the VEXAT model’s titin-element allows754

it to produce enhanced forces similar to biological muscle, while the force respone755

of both the MAT 156 and EHTM is too weak. In response to vibration the VEXAT756

model has a force profile that closely resembles a spring-damper in parallel, similar757

to biological muscle, while the MAT 156 and EHTM are too damped.758
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active (δℓL∗, f L∗) isometric data points just prior to the ramp movement from the1061

ascending [51], and descending limb [11] of the force-length relation. Note that the1062

asterix in f PE∗ and f L∗ are being used to denote a parameters fitted to a specific1063

study rather than using more cumbersome notation such as 97f PE and 97f L for [51],1064

and 02f PE and 02f L for [11]. In both studies, there are some parameters that are1065

uncertain or unreported: the optimal CE length (ℓM∗
o ), the maximum isometric force1066

(fM∗
o ), and the path length of the muscle that corresponds to the reference length of1067

0mm (ℓR∗). Accordingly, our vector of optimization parameters x includes the 31068

experimental parameters from each study (ℓM∗
o ,fM∗

o ,ℓR∗) along with the parameters1069

needed to shift (∆∗) and scale (s∗) the passive-force-length relation of the VEXAT1070

model to best fit the data.1071

No additional parameters are needed to fit the active-force-length relation of1072

the CE, nor the tendon force-length relation of the VEXAT model. The shape1073

of the VEXAT model’s active-force-length curve has been made to follow the1074

theoretical sarcomere-force-length relation proposed by Rassier et al. [59] which1075

is depends on the length of the actin and myosin filaments (1.12µm and 1.6µm in1076

cats). Preliminary simulations indicate that Rassier et al.’s [59] theoretical active1077

force-length curve fits that of a cat soleus, though it should be noted that this is1078

not true in general [58]. Only two parameters are needed to scale the normalized1079

tendon force-length curve18 (Fig. 1B) to fit the data: the tendon slack length ℓTs ,1080

and the maximum stiffness of the tendon. Using a candidate value for ℓM∗
o we solve1081

for ℓT∗
s by assuming that the tendon-to-CE ratio as measured by Scott and Loeb1082

[52] is maintained (27 mm of tendon to 38 mm of CE). Given a candidate value for1083

fM∗
o we can now scale the stiffness of the tendon force-length model such that it1084

develops the same normalized tendon stiffness of 30fM
o /ℓTs measured by Scott and1085

Loeb [52].1086

The error of the f PE of the VEXAT model is evaluated first by using the1087

bisection method to solve for the length of the CE that puts the passive CE and the1088

18As is typical [45], the tendon force-length curve varies nonlinearly between strains of 0− eTtoe
during which it develops forces between 0− (2/3)fM

o . Strains greater than eTtoe produce tendon
forces that vary linearly with a stiffness of kT

toe.
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tendon in a static force equilibrium1089

minimize
ℓM

(
s∗ f ECM((1

2
ℓM − 1

2
∆∗)/ℓM∗

o )

+s∗ f 2((ℓ2 −∆2)/ℓM∗
o )
)
cosα(ℓM)

−f T((ℓR∗ + δℓ∗ − ℓM)/ℓT∗
s ) (A.1)

to mimic the experiment. At each iteration, we use Newton’s method to solve for1090

the length of the proximal titin segment ℓ1 that puts the proximal and distal titin1091

segments in a passive force equilibrium1092

f 1((ℓ1 −∆1)/ℓM∗
o )− f 2((ℓ2 −∆2)/ℓM∗

o ) = 0 (A.2)

where1093

ℓ2 = 1
2
ℓM − ℓ1 − (LT12 + LM). (A.3)

To ensure that the passive force-length relation of the model is adjusted by the1094

desired amount ∆∗ we also must shift the serially connected titin curves, which1095

we do by distributing ∆∗ across the proximal1096

∆1 = 1
2
∆∗

1
k1
toe

1
k1
toe

+ 1
k2
toe

(A.4)

and distal1097

∆2 = 1
2
∆∗

1
k2
toe

1
k1
toe

+ 1
k2
toe

(A.5)

titin segments in proportion to the relative compliance of each segment. As with1098

the tendon curve, the stiffness of both the proximal and distal titin curves varies1099

nonlinearly up to a maximum stiffness of k 1
toe and k 2

toe.1100

Finally, the error of the model (ϵPE) is the difference in passive force developed1101

by the model1102

ϵPE = fM∗
o

(
s∗ f ECM((1

2
ℓM − 1

2
∆∗)/ℓM∗

o )

+s∗ f 2((ℓ2 −∆2)/ℓM∗
o )
)
cosα(ℓM)

−f PE∗ (A.6)

and the passive force (f PE∗) measured in the experiment. A similar procedure is1103

used to evaluate the error of the active force developed by the model, where the1104
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bisection method is used to evaluate ℓM that puts the active CE and the tendon in1105

equilibrium1106

minimize
ℓM

fM∗
o

(
a f L(ℓM/ℓM∗

o )

+s∗ f ECM((1
2
ℓM − 1

2
∆∗)/ℓM∗

o )

+s∗ f 2((ℓ2 −∆2)/ℓM∗
o )
)
cosα(ℓM)

−f T((ℓR∗ + δℓ∗ − ℓM)/ℓT∗
s ) (A.7)

where a is the activation of the CE which is set to 1 for all of the active data. The1107

active force error is the difference of the total isometric force produced by the1108

model1109

ϵL = fM∗
o

(
a f L(ℓM/ℓM∗

o )

+s∗ f ECM((1
2
ℓM − 1

2
∆∗)/ℓM∗

o )

+s∗ f 2((ℓ2 −∆2)/ℓM∗
o )
)
cosα(ℓM)

−f L∗ (A.8)

and the measured force (f L∗).1110

We use this approach to simultaneously solve for the parameters (see Tables1111

1A-C and 2A-C for the parameters of model variants HL97 and HL02 respectively)1112

that minimize the active (Fig. 1C) and passive force-length (Fig. 1D) errors on1113

the descending limb [11] using the Matlab [81] function lsqnonlin. The fitting1114

procedure for the ascending limb data [51] is similar, though we restrict s∗ to the1115

value that best fits the descending limb data set [11] and only allow the optimization1116

routine to shift f PE (Fig. 1D): there are too few passive data points in the ascending1117

limb data set [51] to reliably fit both s∗ and ∆∗. The resulting fitted passive and1118

active force length relations were numerically sampled and used to populate the1119

tabular data that defines f PE and f L curves of the MAT 156.1120

The EHTM is fit using a similar method though only the variables associated1121

with the shape of f T, f PE, and f L were adjusted: the values of ℓM∗
o , ℓT∗

s , fM∗
o , and1122

ℓR∗ identified using the VEXAT model were used when fitting the EHTM. First, the1123

shape of the EHTM’s f T was fit to the VEXAT’s f T (Fig. 1B) by varying a subset1124

of parameters (F∗
SEE.0, ∆U∗

SEE,l, ∆U∗
SEE,nll) to minimize the sum of squared errors1125

of the strain at fM
o , the stiffness at fM

o , and the force developed in the middle 1
2
eTtoe1126

of the toe-region. Using the fitted tendon model, we simultaneously fit the variables1127
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that control the shape of the passive (xPE = (∆WDES∗ ,F∗
PEE,L∗

PEE,0, ν
∗
PEE)) and1128

active force-length (xL = (∆W ∗
ASC, ν

∗
CE,ASC,∆WDES∗ , ν

∗
CE,DES)) relations of the1129

EHTM to the passive and active data from the descending limb of the force-length1130

relation [11]. As before, first we solve for ℓM such that1131

minimize
ℓM

af L(ℓM, xL) + f PE(ℓM, xPE)

−f T((ℓR∗ + δℓ∗ − ℓM)/ℓT∗
s ) (A.9)

the tension developed by the CE and the tendon are equal under isometric condi-1132

tions. When evaluating the error of the passive force length relation a = 0 in Eqn.1133

A.9 the error is evaluated as1134

ϵPE = fM∗
o f PE(ℓM, xPE)− f L∗. (A.10)

In addition, we also included two additional error terms from the fitted VEXAT1135

f PE: the force developed at ℓPEo (where f PE(ℓPEo ) = fM
o ), and the stiffness at1136

ℓPEo . These extra points were added to ensure that the two models are similar1137

when developing large passive forces. The error for the active isometric forces is1138

evaluated as1139

ϵL = fM∗
o (af L(ℓM, xL) + f PE(ℓM, xPE))− f L∗. (A.11)

using the value of ℓM that satisfies the force equilibrium in Eqn. A.9 with a = 1.1140

Using these error functions we solved for the parameters (see Tables 1A,F-H and1141

2A,F-H for the parameters of model variants HL97 and HL02 respectively) that1142

simultaneously minimized the sum of squared errors across Eqns. A.10 and A.111143

for the dataset on the descending limb [11] (Fig. 1C-D). As before, when solving1144

the passive parameters xPE for the ascending limb data set [51] we limited the1145

optimization routine to shifting the passive curve that best fits the descending limb1146

data [11] (Fig. 1D).1147

Appendix B. Fitting the force-velocity relation1148

With most of the architectural (ℓMo , fM
o , and ℓTs ), experimental (ℓR∗), and1149

force-length relations (f̃ T(ℓ̃T), f L(ℓ̃M), and f̃ PE(ℓ̃M)) fitted we can now fit the1150

force-velocity relation. To start, we digitize the following key points from Figure1151

1A of Herzog and Leonard 1997 [51]: the isometric force fM∗ developed at the final1152

length of ℓM∗ = 0mm, the forces fM∗
i developed at the final ramp length of 0mm1153

for all of the i = 1 . . . 5 shortening trials (vM∗
i varies from −2.5 to −30 mms−1),1154
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and the forces developed at the final ramp length of 0mm for all of the i = 6 . . . 101155

lengthening (vM∗
i varies from 2.5 to 30 mms−1) trials. Using these digitized points,1156

we can transform this data into a series of discrete measurements that approximate1157

the force-velocity relation using Eqn. 7 at the normalized velocities evaluated by1158

Eqn. 8 which are in units of ℓMo s−1. Although there is clearly some passive force1159

being developed at ℓM∗ (between 1-3N between t = 0− 0.3s in Figure 1A of [51])1160

we ignore this passive component for two reasons: no measurement of this force is1161

provided and it is small in comparison to fM∗ (37.5N).1162

Next, we fit the force-velocity relation of the VEXAT model so that its fV(ṽM)1163

curve best fits the points (ṽ ∗
i , f̃

V∗
i ). Since the experimental measurements of f̃ V∗

i1164

[51] are inline with the tendon, our first step is to estimate ℓM, α, and vM given1165

ℓR∗, fV(ṽM). First, we are going to assume that the lengthening rate of the tendon1166

is negligible (vT ≈ 0), which is reasonable for muscle-tendon complexes in which1167

ℓTs /ℓ
M
o ≤ 1 [47]. All model variants in this work have the same ℓTs /ℓ

M
o ratio of 0.711168

(27mm/38mm = 0.71) as measured by Scott et al. [52]. Using this assumption,1169

we can estimate the length of the tendon (ignoring damping) by inverting the1170

force-length curve of the tendon1171

ℓ̃T = f −T(fM∗
i ) (B.1)

which allows us to solve for1172

ℓMAT = ℓM cosα = ℓR∗ − ℓ̃TℓTs . (B.2)

This assumption also allows us to relate1173

vM
AT = vM cosα− ℓM sinαα̇ = vM∗

i (B.3)

vM
AT to vM, α̇ and vM∗

i . Since Eqn. 2 of the pennation model constrains the height1174

of the CE to be constant we can solve for1175

ℓM =
√
(ℓM cosα)2 + (ℓMo sinαo)2 (B.4)

which allows us to solve for α1176

α = arccos

(
ℓR∗ − ℓ̃TℓTs

ℓM

)
. (B.5)

in Eqn. B.2. By taking the derivative of Eqn. 2 we can solve for1177

α̇ = −vM

ℓM
tanα. (B.6)
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After substituting Eqn. B.6 into Eqn. B.3 we are left with1178

vM = vM∗
i cosα. (B.7)

allowing us to evaluate1179

f̃ V
i = fV

(
vM

vM
max

)
(B.8)

and calculate the error1180

ϵV = f̃ V
i cosα− f̃ V∗

i (B.9)

of the model’s force-velocity relation. By minimizing the sum of squared errors us-1181

ing the lsqnonlin function in Matlab [81] we arrive at values of vM
max = 2.81 ℓMo s−1

1182

for HL97, and vM
max = 2.72 ℓMo s−1 for HL02 variants of the VEXAT model (see1183

Tables 1D and 2D for the parameters of model variants HL97 and HL02 respec-1184

tively). The resulting fV of the VEXAT model fits the concentric data quite closely1185

but deviates from the eccentric data points (Fig. 1E) with an overall root mean1186

squared error (RMSE) of 0.0749. Although the eccentric side of the fV appears to1187

be weak, the active-titin element of the VEXAT model will contribute additional1188

tension that will be separately fitted at a later stage.1189

These values for vM
max can be transformed to the non-pennated MAT 156 by1190

noting that the CE length of MAT 1561191

ℓMAT = ℓM cosα (B.10)

is the projection of the VEXAT model’s CE onto the direction. Taking a derivative1192

we can solve for the rate of lengthening of the MAT 156 CE1193

vM
AT = vM cosα− ℓM sinα α̇ (B.11)

by substituting vM = vM
max, ℓM = ℓMo , α = αo, and evaluating α̇ using Eqn.1194

B.6. This process results in values for vM
max of for the MAT 156 model of vM

max =1195

2.83 ℓMo s−1 for HL97, and vM
max = 2.74 ℓMo s−1 for HL02. The values for vM

max of1196

both the VEXAT and MAT 156 models are very similar (see Tables 1E and 2E1197

for the parameters of model variants HL97 and HL02 respectively) because αo is1198

small.1199

Defining the error function to fit the force-velocity relation of the EHTM is less1200

complicated than the VEXAT model because it is not pennated. Given a candidate1201

set of parameters x = (Brel,0, Fe, Se) we calculate the value of1202

Arel,0 =
Brel,0

vM
max

(B.12)
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so that all three models share the same maximum shortening velocity of vM
max. Now1203

we can evaluate the error of the candidate fV as1204

ϵV = fV(vM∗
i ,Arel,0,Brel,0,Fe, Se)− f̃ V∗

i (B.13)

where fV is the force-velocity curve of the EHTM where the concentric side is1205

described in Günther et al. [27], and the eccentric side of the curve comes from1206

Appendix A.1 of van Soest and Bobbert [82]. As before, we used Matlab’s [81]1207

function lsqnonlin to minimize the sum of squared errors between the force-velocity1208

relation of the EHTM and the force-velocity data extracted from Figure 1A of1209

Herzog and Leonard 1997 [51] for the HL97 and HL02 model variants (see Tables1210

1I and 2I for the parameters of model variants HL97 and HL02 respectively). The1211

fitted fV of the EHTM follows the data very closely for both the concentric and1212

eccentric data points (Fig. 1E) as indicated by the low RMSE of 0.0255.1213
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Appendix C. Additional active-lengthening simulations1214

D.

E.

F.

G.

H.

I.

Figure C.10: Herzog and Leonard [11] studied the effect of length change independently of the
final length by starting the ramp 3mm longer but finishing at the same 9mm from the reference
length for a total length change of 6mm (B,E, and H). The 6mm stretch produces lower peak forces
than the 9mm stretch, a pattern that is replicated by the VEXAT model in both the time-series data
(A, D, and G) and in the force-length space (C, F, and I). In contrast, both the MAT 156 and EHTM
produce the same peak forces (compare A, D and G to Fig. 4A, D and G) during the 6mm stretch
as during the 9mm stretch. While none of the models develop passive force enhancement, the cat
soleus [11] develops less passive force enhancement during the 6mm stretch than the 9mm. Note
that the VEXAT’s titin model remain fitted to the 9mm− 9mms−1 trial (Fig. 4D), and so, every
trial pictured here can be considered testing data.
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D.

E.

F.

G.

H.

I.

Figure C.11: When the length change is reduced from 9mm (Fig. 4), to 6mm (Fig. C.10), and
finally to 3mm it is clear that the peak tension of both the cat soleus [11] and the VEXAT model
vary together, producing lower peak forces as the length change is reduced. As before, both the
MAT 156 and EHTM produce the same peak forces independent of the size of the length change.
As a result, the peak forces in both the time-domain (A, D, and G) and force-length space (C, F, and
I) are quite similar during the 3mm length change. In addition, the cat soleus [11] produces virtually
no passive force enhancement during the 3mm trial, and so, the models and the experimental data
produce similar force at the end of the trial (see A, D, and G at second 12.0).

Appendix D. Additional active impedance simulations1215
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J. K. L.

Figure D.12: The response of the models to the 1.6mm − 15Hz perturbation differs with the
response to the 1.6mm − 90Hz. In the time domain, the MAT 156’s VAF has improved (A),
the EHTM’s VAF has declined a lot (B), and the VEXAT’s VAF has declined a little. In the
frequency-domain, the largest differences in comparison to the 1.6mm− 15Hz perturbation are:
the accuracy of the gain response of both the MAT 156 and VEXAT have improved, as have the
coherence-squared values of the MAT 156 and EHTM models.
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