
Multi-Step Forward Dynamic Gait Simulation

Matthew Millard, John McPhee, and Eric Kubica

Systems Design Engineering
University of Waterloo
200 University Ave West
Waterloo ON
Canada
mjhmilla@engmail.uwaterloo.ca

Summary. A predictive forward-dynamic simulation of human gait would be ex-
tremely useful to many different researchers, and professionals. Metabolic efficiency
is one of the defining characteristics of human gait. Forward-dynamic simulations
of human gait can be used to calculate the muscle load profiles for a given walk-
ing pattern, which in turn can be used to estimate metabolic energy consumption.
One approach to predict human gait is to search for, and converge on metabolically
efficient gaits. This approach demands a high-fidelity model; errors in the kinetic
response of the model will affect the predicted muscle loads and thus the calculated
metabolic cost. If the kinetic response of the model is not realistic, the simulated
gait will not be reflective of how a human would walk. The foot forms an important
kinetic and kinematic boundary condition between the model and the ground: joint
torque profiles, muscle loads, and thus metabolic cost will be adversely affected by
a poorly performing foot contact model. A recent approach to predict human gait
is reviewed, and new foot contact modelling results are presented.

1 Introduction

Human and animal gait has been studied by using experiments to tease out the
neural, muscular and mechanical mechanisms that are employed to walk. Inverse
dynamic simulation is the most common simulation technique used to study human
gait. Inverse dynamics works backwards from an observed motion in an effort to find
the forces that caused the motion — inverse dynamics is not predictive. In contrast,
forward dynamics can be used to determine how a mechanism will move when it is
subjected to forces — making forward dynamics predictive.

Forward dynamic human gait simulations usually only simulate a single step
[4, 11] in an effort to avoid modelling foot contact and balance control systems. The
few multi-step forward-dynamic simulations in the literature have used a relatively
fixed gait [27, 24]. In contrast, Peasgood et al ’s [23] forward dynamic simulation is
predictive: the simulated gait is altered in an effort to find metabolically efficient
or ‘human-like’ gaits, allowing it to estimate how a person would walk in a new
situation — e.g. with a new lower-limb prosthetic, or more flexible muscles.
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A computer simulation that is able to reliably predict how a person would walk
in a new situation would be extremely useful to many health care professionals
and researchers studying human gait. Peasgood et al ’s system finds ‘human-like’ or
metabolically minimal gaits by searching for joint trajectories for the hip, knee and
ankle that minimize metabolic cost per distance traveled. The model is not supported
or balanced by any artificial means, and so, poorly chosen trajectories can overwhelm
the balance controller, causing the model to fall. This study was undertaken to
evaluate and extend Peasgood et al ’s work, and to identify the shortcomings of
current multi-step forward dynamic gait simulations.

2 Methods

Peasgood et al ’s system represents the first attempt at developing a predictive,
multi-step gait simulation that searches for metabolically efficient gaits. Nearly 1000,
10-step simulations were required to find a metabolically efficient, ‘human-like’ gait.
Originally the 1000 gait simulations took 10 days to perform on a single computer
using the popular mechanical modeling package MSC.Adams [21]. DynaFlexPro [9],
another modeling package, developed since Peasgood et al ’s work, offers substan-
tial performance advantages over Adams: the updated version of Peasgood et al ’s
predictive system now takes only 8 hours to run. Peasgood et al ’s work was taken,
carefully examined, analyzed, improved and implemented in DynaFlexPro.

2.1 Dynamic Model

Peasgood et al developed a predictive gait simulation using a 2D, 7 segment, 9 degree
of freedom (dof), anthropomorphic model shown in Fig. 1 with a continuous foot
contact model. This is a fairly standard model topology for gait studies. The upper
body is simplified into a single body representing the head, arms and trunk (HAT);
the thigh and shank are each one segment, as is the foot [3, 1, 13]. An additional
simplification has been made in this model by fusing the HAT to the pelvis. There
was an unintended error in Peasgood et al ’s original model: there was an extra body
attached to the foot that had a moment of inertia of 1.5 kg ·m2, which is comparable
to the HAT segment.

A convergence study was performed on both the DynaFlexPro and the corrected
Adams gait models by dropping both unactuated models onto the floor from the
same initial conditions. The convergence of each model was checked individually.
The results from the DynaFlexPro model converged for every simulation, whereas
the Adams model failed to converge with an integrator error tolerance of 10−5. The
maximum relative error between the Adams and DynaFlexPro result sets is shown
in Table 2.1 for the horizontal position of the left hip, the angle of the right ankle and
the contact force developed under the right heel. The relative error was computed
by taking the largest absolute difference between the two simulations and dividing
it by the largest absolute value from the DynaFlexPro result set. Interestingly, the
simulations with an integrator error tolerance of 10−7 had the smallest relative error,
and allowed the DynaFlexPro model to simulate four times faster than the Adams
model as shown in Table 2.1.
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2.2 Foot Contact

Foot contact forces were calculated using a 2-point foot contact model, with a point
contact located at the heel and metatarsal. Normal forces were calculated using
the Adams implementation [22] of the continuous Hunt-Crossley [18] point contact
model:

fn = −kyp − c(y)ẋ (1)

Fig. 1. Peasgood et al ’s 7 segment, 9 degree of freedom, planar gait model with a
2-point continuous foot contact model
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Table 1. Performance comparison between the Adams and DynaFlexPro 2D 7
segment gait models for a 10 second simulation. The Adams simulation with an
integrator error tolerance of 10−5 failed to converge. The relative error increases
from the hip position to the foot angle: the large mass of the HAT attenuates
position error of the hip, while foot position is more sensitive to errors due to its
light mass. The stiffness of the heel contact makes the simulated contact forces very
sensitive to errors

Adams DynaFlexPro Maximum Relative Error (%)

Integrator GSTIFF (I3) ode15s (NDF) Left hip Right ankle Right heel
Error Tol. Simulation Time disp. (x) angle contact force
10−5 29 4.1 3.02 5.65 14.30
10−7 33 7.3 0.09 0.16 0.27
10−9 36 30 0.24 0.48 0.73

The Hunt-Crossley contact model calculates normal force (fn) as a function of
penetration depth (y), penetration rate (ẏ), material stiffness (k, p), and material
damping (c(y)). The implementation of the model ramps up damping (c(y)) as a
function of penetration depth, to prevent an instantaneous normal force that would
be created using a simple damping term such as (cmaxẏ). A dry Coulomb model was
used to calculate the force of friction between the points and the plane:

ff = µ(ẋ)fn (2)

This friction model has stiction (µs) and dynamic friction (µd) values that are
interpolated using a cubic step function [22] between the stiction velocity (vs) and
the sliding velocity (vd) using the tangential contact velocity (ẋ) as an input. The
particular contact and friction parameters used for the gait simulation were chosen
by the pattern search routine (described later) to match the ground reaction forces
created during healthy gait [26].

2.3 Joint Trajectory Control

Pre-computed joint trajectories are used to define the gait of the model at the po-
sition level. Each joint is actuated using a proportional-derivative (PD) controller
that modifies and regulates the predefined joint trajectories. The initial joint tra-
jectories were taken from an existing experimental data set of a healthy gait of an
average-sized male [26] and interpolated using a 5-term Fourier series:

θj(t) = C0 +

5X
k=1

�
Aksin

�
2πkt

period

�
+ Bkcos

�
2πkt

period

��
(3)

Some adjustments were made to the trajectories in order to apply them to a
sagittal plane gait model: the swing phase of the ankle trajectory had to be altered
to prevent the foot from dragging on the ground. This makes sense because the 2D
sagittal plane model cannot use hip roll and body sway in the frontal plane to adjust



Multi-Step Forward Dynamic Gait Simulation 5

the floor clearance of the swing limb, unlike the subject used in the experiment data
set. The interpolated joint trajectories were applied to the PD joint controllers to
achieve an initial simulated gait. The optimization routine adjusts the values of the
Fourier series coefficients for each limb to search for new gaits. The same Fourier
coefficients are used for each limb, offset in phase by π radians, restricting the model
to walk with a symmetric gait.

2.4 Balance and Velocity Control

A balanced gait and a desired forward velocity is achieved by manipulating the pitch
of the HAT. The pitch controller works by monitoring the orientation of the HAT
relative to a desired set angle and speeding up or slowing down the progression of
the legs through the joint trajectories to keep the HAT at a desired angle. When the
HAT pitches forward (backward) beyond the desired set angle, the legs are driven
faster (slower) to walk ahead (behind) of the HAT. The velocity controller is very
similar to the pitch controller: when the model is moving too slowly (quickly), the
reference angle for the pitch controller is increased (decreased), causing the model
to lean forward (backward), making the balance controller force the model to walk
faster (slower). A detailed account of the pitch and velocity controllers can be found
in Peasgood et al ’s original paper [23]. The pitch and velocity controllers balanced
the model, but only over a very narrow range: the model could not initiate gait
from a stand still, but had to begin the simulation with carefully selected initial
conditions. These initial conditions were used for every simulation.

2.5 Pattern Search Optimization Routine

Peasgood et al tuned the control system parameters and the joint trajectories using a
pattern search optimization routine. The algorithm is conceptually described below.
A more formal treatment of the material can be found in Lewis et al [20].

1. Repeat for all parameters:
a) Add amounts +∆ and - ∆ (called the grid size) to one parameter.
b) Evaluate the objective function. Save parameter changes that improve the

objective function for later use.
2. Update all parameters with the improved values from Step 1 .
3. Evaluate the objective function. If it improves, accept the new parameter set

from Step 2; else use the original parameter set.
4. Decrease ∆ by half, return to Step 1. Continue until ∆ is below a predefined

tolerance.

The performance of this algorithm relies on the assumption that a set of indi-
vidual changes to the joint trajectories will collectively result in an improvement.
This assumption is valid if the set of parameters are independent. Peasgood et al ’s
assumption of independence does not hold when applied to joint trajectories: a ben-
eficial change to the hip joint trajectory may cause the model to fall when combined
with a beneficial change to the knee joint trajectory. Thus this search routine only
ever improved the objective function when a set of individual parameter changes
was found that just happened to collectively improve the simulated gait.
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The pattern search optimization routine was used to find joint trajectories that
minimized metabolic cost. In an optimization run that had 717 simulations only once
did all of the individual improvements found by the pattern search routine result in
a more efficient gait when used collectively. This one single improvement was able to
decrease the metabolic cost of the simulated gait by 21.5%. An examination of the
optimization log file revealed that there were many individual parameter changes
that improved the objective function but were ignored. Further investigation showed
that a set of individually beneficial parameter changes caused the model to fall
when applied simultaneously. The pattern search algorithm was adjusted to take
advantage of good individual parameter changes immediately, resulting in a greedy
pattern search routine. A further adjustment was made by allowing the pattern
search to continue making adjustments to a single parameter that improved the
objective function until the improvements ceased.

3 Results

The joint angles for the final simulated gait and a healthy human gait [26] are shown
in Fig. 2. The standard deviation of the joint angles, torques and ground reaction
forces for the current results are negligible, indicating that the gait is very consistent.
The joint trajectories of the knee and hip are similar between all three data sets,
but the ankle joint trajectories, and torques are quite dissimilar. The log file of the
optimization routine revealed that increasing the ankle extension led to a significant
reduction in metabolic cost. The adjusted pattern search routine was able to find a
gait that resulted in 47.6% less metabolic cost, a 26.1% improvement over Peasgood
et al ’s original approach.

The foot contact model produced ground reaction forces that differ substantially
from those observed during normal human gait [26], as shown in Fig. 3. The poor
performance of the foot contact model is partly responsible for the joint torque
differences seen between healthy human gait and the simulated results in Fig. 2. The
kinematics of the foot contact model also exhibited heel and metatarsal compressions
exceeding 40.0 mm, far greater than compression levels of real human heel [10] and
metatarsal pads [7]. The kinematics and kinetics of this gait differ from healthy
human gait [26], and are highly influenced by differences between the simulated foot
contact model and a human foot.
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Fig. 2. Joint trajectory and torque comparison between Winter’s recordings of
human gait [26], and the current results

4 Discussion

One of the biggest shortcomings of the current system is that the balance controller
is so sensitive to changes in gait parameters, that very little of the gait space can
be searched without making the model fall. The latest optimization run consisted of
721 simulations; 543 of these simulations resulted in the model falling. As well, the
current system is not well suited to making changes to single parameters without
having potentially disastrous effects: changing any one of the Fourier coefficients
will alter the entire gait cycle. A parameter change that improves the efficiency
of the stance phase, may cause the model to fall during the swing phase. A more
advanced balance control system that allows the swing and stance phases to be
tuned separately would be a great improvement to the current system.
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Fig. 3. Normal and friction force comparison between Winter’s recordings [26] and
the current 2-point foot contact model

The computationally efficient, but low-fidelity foot contact model produced
ground reaction forces and foot pad compressions that were drastically different
than those observed in healthy human gait, and negatively affected the simulated
joint kinetics. A high-fidelity foot contact model is especially important for a pre-
dictive gait simulation: contact forces at the foot will affect the loads at the joints
of the legs, and thus the metabolic cost of the leg muscles. If the model does not
have a realistic foot contact model, it will be impossible to produce metabolic cost
estimates that correspond to what one would expect from a human [28]. A predictive
gait simulation without a high-fidelity foot contact model could not converge to a
‘human-like’ gait.

5 Foot Contact Modeling

Foot contact models are typically not validated separately from the gait simulation
[23, 24, 27]. This approach is problematic: if the ground reaction force representa-
tion is poor, it is impossible to know if its due to an error in the foot contact model
or due to the way the foot is being used by the assumed control system. The only
foot contact model that was validated separately from the gait simulation [12] was
validated in a naive way: ankle joint torques and forces estimated from an inverse
dynamics analysis were applied to a forward dynamic simulation of the foot model;
the fidelity of the foot model was evaluated by comparing the kinematics of the
simulated foot to the experimental data. This approach is naive because the quanti-
zation and measurement error that is inherent in an experimental inverse dynamics
analysis will cause the forward dynamic simulation to diverge from the experimental
observations, even if the model is perfect. None of the lumped-parameter foot con-
tact models published to date [23, 24, 27, 12], provide convincing results of emulating
a real human foot.

The approach taken in the current work to assess candidate foot contact models
is different from previous attempts [12]: a contact model that was suitable for mod-
eling heel tissue was first identified, then candidate foot contact models were created
using this contact model. Ground reaction force profiles were used assess the fidelity
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each model: a realistic foot contact model should develop the same ground reaction
forces as a human foot when driven through the same kinematic path. A simple
experiment was undertaken to gather the data required to test the candidate foot
contact models: a subject’s ankle position and ground reaction force profiles during
normal gait were recorded using Optotrak infrared diodes (IREDs) and a force plate.
The subject walked at three different subjective paces (slow, normal and quickly) in
two different load conditions: bodyweight (BW) and 113% bodyweight. The different
velocity and loading conditions were used to assess the sensitivity of the model to
cadence and load. The heavier loading condition was achieved by having the subject
carry a cinder block. The following sections will detail recent work to create and
validate a new foot contact model.

5.1 Foot Pad Contact Properties

Studies to determine the stiffness and damping properties of human foot pads have
failed to produce consistent results. Traditionally in vivo experimental results dis-
agree by orders of magnitude from in vitro experiments. In the past, in vivo experi-
ments have measured the tissue compression and load by impacting an instrumented
mass into a subject’s heel [25, 19]. As long as the skeletal system of the body acts
like a perfect ground, the deceleration of the mass will be entirely due to the com-
pression of the heel pad. Aerts et al [2] was able to experimentally demonstrate
that this assumption is invalid: significant amounts of energy is lost through the
body, skewing the stiffness values reported from in vivo pendular experiments to be
nearly one-sixth the published in vitro values. In vitro stiffness and damping esti-
mates obtained using an Instron material testing machine are also suspect because
the tissue may not be representative of living foot pad tissue from the general pop-
ulation. An in vivo experimental procedure was developed to estimate foot stiffness
and damping:

1. The compression of the heel pad was inferred by tracking the position of the
fibular trochlea of the calcaneus using an Optotrak IRED. The fibular trochlea
of the calcaneus is a bony protrusion on the lateral side (outside) of the heel
bone. A marker was also placed on the medial (inside) side of the calcaneus.

2. The force acting on the heel pad was measured using a force plate. Only the
heel was placed on the force plate.

3. The subject voluntarily lowered their heel on the force plate at three subjective
speeds: slow, medium and fast. The heel was slowly raised. The fast trials had
to be discarded due to undersampling, despite sampling the data at 200 Hz.

This experimental method assumes that there is not significant IRED marker
movement relative to the calcaneus. The distance between the lateral and medial
calcaneus markers was examined to estimate skin stretch: the distance of 68.0 mm
changed by 2.0 mm on average during a load cycle, indicating that skin stretch has
likely skewed the data. The hysteresis loops obtained during the preliminary exper-
iment have energy losses ranging from 21%-37%. This level of energy dissipation is
somewhat similar to the 17%-19% reported by Gefen et al ’s in vivo study [10] and
grossly lower than the 46.5%-65.5% reported by Aerts et al. Direct measurement
of the heel pad tissue compression will be needed in order to produce more precise
results.
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5.2 Volumetric Contact Model

Theoretical contact modelling is a very active research area [16], with relatively
sparse experimental work [8, 14]. Unstable normal directions is one of the numerical
problems that can arise during the simulation of contacting bodies with complicated
geometry. A new contact model based on interpenetration volumes [16] has been
developed to overcome many of the numerical instabilities of existing contact models
and is currently being used by the Canadian Space Agency to simulate Canadarm
operations. This contact model was chosen as an ideal candidate for a new foot
contact model because of its desirable numerical properties.

Gonthier et al [16] analytically derived expressions for the normal force fn, and
rolling resistance τ t for a linearly elastic Winkler foundation of stiffness k and damp-
ing a impacted by a body with a normal velocity of vcn :

fn = kV (1 + avcn)n̂ (4)

τ t = kaJc · ωt (5)

These very general expressions assume it is possible to calculate the volume of
interpenetration (V ), and its inertia matrix (Jc). These parameters can be very
challenging to compute for arbitrarily shaped bodies, and so analytical expressions
for V and Jc were developed for spherical primitives. The foot contact model was
then created out of an array of spherical elements. Vectors and matrices are shown
in boldface; scalars in regular type.

Although it is often reported that human heel tissue stiffness is dependent on
strain [17] (using a penetration depth model), it is not clear if this dependence
is due to geometry of the pad or the tissue itself: V is a nonlinear function of
penetration depth, and might account for the nonlinearity of the heel response. A
preliminary study using the experimental procedure described in the previous section
was undertaken to garner in vivo hysteretic load curves of the heel. A single spherical
element was chosen to represent the heel pad. The stiffness and damping parameters
were tuned to try to make the response of the model match the experimental data set.
Due to the nonlinearity of the problem, a full-enumeration optimization routine was
used to find a good set of parameters for the simulated heel pad. The results shown in
Fig. 4 show that a single volumetric spherical contact element was able to achieve a
good agreement with the experimental in vivo load curves in all but one of the trials.
Since there were so few experimental trials undertaken it is impossible to know if the
ill-fitting trials is a consequence of the ‘memory’ of foot tissue observed in vitro [2],
or due to a fundamental difference between the contact model and the contact
properties of human heel pads. The preliminary results were encouraging enough to
pursue a foot contact model using Gonthier et al ’s linearly elastic volumetric contact
model and spherical contact elements.

5.3 Friction Modeling

Every foot contact model developed to date has made use of a Coulomb friction
model without any experimental justification. There has not been any effort to date
to develop experiments to determine the shear and friction properties of human
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Fig. 4. Compression load cycles of a tuned volumetric sphere vs experimental data.
Stiffness and damping are constant. The label ‘BW’ stands for body weight, and the
load rate reported is the maximum normal velocity the heel achieves as it contacts
the floor

heel pad in vivo or in vitro. Typically the tangential ground reaction forces found
in simulated feet are accompanied by unrealistically high initial transient forces,
[12, 24], or in the very least force profiles that deviate [23] from experimental ground
reaction force recordings [26]. Initially a Coulomb model was adopted to see how it
would perform with the new foot contact models.

5.4 Foot Contact Modelling Results

Contact force computation and simulation usually represents a large computational
burden when simulating a dynamic system. Thus a simple, yet high-fidelity foot
contact model is very desirable. Accordingly foot contact model topologies began
from the very simple and progressed in complexity as shown in Fig. 5 to achieve the
desired fidelity.

Two-dimensional foot contact models were driven at the ankle through experi-
mentally gathered foot trajectories. An optimization routine was used to tune the
contact and friction properties of every spherical element, and to make slight ad-
justments to the geometry of the foot. It is important to note that the slight flex
through the mid foot at the tarsal joints [5] is not being modelled: simulating this
flexure could be computationally expensive due to the stiff nature of the foot.
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a. b.

c.

Fig. 5. Foot contact models consisting of 2,3, and 4 spheres shown in a., b., and c.
Models a. and b. have been tested; model c. is hypothesized to be the least sensitive
to changes in walking velocity

5.5 Two-Sphere Single Segment Foot Contact Model

The first contact model tested consisted of a single-segment rigid foot with a vol-
umetric spherical contact for the heel and the metatarsal shown in Fig. 5.a, with
a Coulomb friction model. The foot was tuned to fit all of the trials normal and
friction force profiles. The normal ground reaction forces of best fit are shown in
Fig. 6. Curiously the model was able to fit the faster paced trials far better than the
slow trials, which show some significant deviations. The optimization routine found
a solution that yielded metatarsal penetration depths that were nearly 20.0 mm —
far greater than the 7.0 mm observed in other studies [7].

When the foot was tuned to fit the normal forces seen in each trial individually,
a better result was obtained, however the geometry of the foot was different at
every trial: the metatarsal contact was placed closer to the heel for the slow trials.
One explanation for this behaviour lies in the role of toes: during slow walking the
toes contribute very little to the normal force profile, shifting the average center of
pressure of the forefoot towards the ankle. During fast walking the toes contribute
more heavily to the normal force profile, shifting the average center of pressure of
the forefoot towards the toes.

The friction forces predicted by the model were far below what was recorded
during the experiment. Assuming that a Coulomb friction model was inadequate,
a more advanced friction model was sought out. Bristle friction models [15] have
been used as a substitute for Coulomb friction models in robotics simulations be-
cause both true stiction and conservative material shear can be simulated — which
is in contrast to a Coulomb friction model that cannot model true stiction, nor
conservative material shear. A bristle friction model mimics the forces developed
between contacting bodies using the tangential displacement (z) and shear rate (ż)
of viscoelastic bristles to generate friction forces as shown in Fig. 7 and in Eq 6:

fbr = kbrz + abrψ(ż) (6)
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Fig. 6. The normal force developed between the two-sphere foot-contact model.
‘BW’ stands for ‘bodyweight’

The function ψ(ż) modulates the friction model from a bristle friction model for
slip rates below the Stribeck velocity to a Coulomb friction model for slip rates above
the Stribeck velocity. The 3D bristle friction model presented in [15] was employed,
but without the dwell-time dependency

Fig. 7. A bristle friction model relies on the state of imaginary bristles on the
surface of the contacting bodies to develop friction forces
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The model produced encouraging normal contact force profiles in Fig. 6. Its per-
formance indicated that toes may indeed play an important role in foot contact, and
that a Coulomb friction model appears to be inadequate for modelling the tangen-
tial forces developed between the foot and the ground. In addition, the optimization
routine should be constrained to find solutions that limit the compression of the
foot pads to realistic levels.

5.6 Three-Sphere Two Segment Foot Contact Model

The foot contact model shown in Fig. 5.b incorporated a toe segment (adding 1
dof to the model) to improve the normal ground reaction force profile, a bristle
friction model to improve the friction force profile and parameter tuning routine
was restricted to find solutions that had plausible compressions at the heel [10] and
metatarsal [6] foot pads. Although the compressions seen at the heel and metatarsals
contacts were kept to plausible levels, the normal ground reaction force profiles had
a noticeably degraded performance relative to the previous model as shown in Fig.
8. The fast walking trials profiles resemble experimentally gathered normal ground
reaction forces however, the model performs very poorly for the remainder of the
trials — far worse than the previous model.

Some insight into why the previous two models produce the best results for the
fast walking trials and poor results for the slow walking trials can be obtained by

Fig. 8. The normal force developed between the three-segment foot-contact model
with a toe contact
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Fig. 9. The center of pressure in the direction of travel was segmented for each trial
to show where the COP is relative to the foot. As the trials progress from slower
to faster gaits, the COP is spending less and less time in the mid-foot region. This
may explain why the contact models pictured in Fig. 5 a. and b. perform poorly
at slow walking speeds: the tissue between the metatarsal and heel contacts is not
being modelled

examining center-of-pressure (COP) of the subject’s foot in the direction of travel
shown in Fig. 9. The location of the COP has been plotted in Fig. 9 along with
dividing lines marking the transitions from the heel to the mid-foot, the mid-foot to
the 1st metatarsal pads and from the 1st metatarsal pad to the toes. Fig. 9 clearly
shows that the COP spends a significant amount of time in the mid-foot region for
the slow trials, which progressively lessens as the walking speed increases. Fig. 9
suggests that the models perform poorly for the slow trials because the mid-foot
contributes significantly to the normal contact force profile, yet this area of the
foot is not being modelled. The previous 2 segment model performed better than
the current 3 segment model because the compression levels of the foot pads was
not restricted: the additional compression seen at the metatarsal contact allowed
the model to artificially include the contribution of the mid-foot. The results of this
model appear to indicate that it is necessary to model mid-foot contact. Accordingly
a candidate foot contact model is shown in Fig. 5.c that includes a mid-foot contact.
This candidate foot contact model has yet to be implemented and tested.

The friction force profile shown in Fig. 10 was much improved over the Coulomb
model, though failed to match all data sets shortly after foot contact and only



16 Matthew Millard, John McPhee, and Eric Kubica

Fig. 10. Experimental and simulated friction force profiles, making use of a bristle
friction model [15]

roughly approximated the tangential forces towards the end of the foot contact.
The poor representation of the friction force profiles may not be due to the model.
The experimentally measured shear movements might also be too small to measure
accurately: skin stretch and Optotrak IRED position error might be drowning the
signal.

6 Conclusions

Multi-step, forward-dynamic human gait simulations do not yet have the fidelity to
create precise predictions of how humans would walk in new situations. Peasgood et
al ’s [23] system was a first attempt at developing a predictive human gait simula-
tion. Although Peasgood et al ’s system was the first to show that prosthetic gait has
a greater metabolic cost than healthy gait in silico using a forward dynamic sim-
ulation, the predicted kinetics of Peasgood et al ’s healthy model were significantly
different from published joint kinetics of human gait found using inverse dynamics
analysis [26]. A high-fidelity kinetic response is required for high-fidelity gait pre-
dictions since metabolic cost is a function of muscle stress and thus joint torque: if
the kinetic response of the model is poor, the model will not be able to converge to
a human-like gait.
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The joint torque profiles of the simulated gait are highly influenced by the ground
reaction forces applied at the foot. Foot contact models were created using spher-
ical elements and contact forces were calculated using Gonthier et al ’s volumetric
contact model. The models were validated by driving the ankle joint through exper-
imentally recorded ankle trajectories and examining the quality of match between
the ground reaction forces developed at the simulated foot, and the human foot.
Current modelling efforts indicate that it is important to represent the heel, mid-
foot, and metatarsal foot pads in the contact model. It is important to note that it
may not be possible to develop a 2D foot contact model that perfectly replicates the
forces created between a 3D foot and the ground: foot roll in the frontal plane [5] is
ignored in 2D. Additionally, a bristle friction model was found to predict foot fric-
tion forces better than a Coulomb friction model. The results of the bristle friction
model were not ideal: it remains unclear if the friction model is inadequate or if noise
in the experimentally collected foot kinematics is making this validation approach
difficult.

The sensitivity of Peasgood et al ’s balance controller to initial conditions and
joint trajectories prevented the gait space from being searched widely. Nearly 6 out
of 7 simulations resulted in a fall. High-fidelity predictive human gait simulations
would benefit greatly from an advanced balance controller that is not sensitive to
initial conditions, and is able to initiate, maintain, and terminate gait as adeptly as
a human.

There is a lot of fundamental research that needs to be conducted before high-
fidelity predictive human gait simulations can be developed. The predicted kinetics
of a healthy human gait should follow those found using inverse dynamics [26]. Since
the kinetics of the leg joints are highly influenced by the ground reaction forces at the
foot, a high-fidelity foot contact model is required. Additionally, the model needs an
advanced balance controller in order to search the gait space to find a metabolically
minimal, or ‘human-like’ gait.
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