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Abstract1

The force developed by actively lengthened muscle depends2

on different structures across different scales of lengthening.3

For small perturbations, the active response of muscle is4

well captured by a linear-time-invariant (LTI) system: a5

stiff spring in parallel with a light damper. The force re-6

sponse of muscle to longer stretches is better represented by7

a compliant spring that can fix its end when activated. Ex-8

perimental work has shown that the stiffness and damping9

(impedance) of muscle in response to small perturbations is10

of fundamental importance to motor learning and mechani-11

cal stability, while the huge forces developed during long12

active stretches are critical for simulating and predicting13

injury. Outside of motor learning and injury, muscle is14

actively lengthened as a part of nearly all terrestrial loco-15

motion. Despite the functional importance of impedance16

and active lengthening, no single muscle model has all of17

these mechanical properties. In this work, we present the18

viscoelastic-crossbridge active-titin (VEXAT) model that19

can replicate the response of muscle to length changes great20

and small. To evaluate the VEXAT model, we compare its21

response to biological muscle by simulating experiments22

that measure the impedance of muscle, and the forces de-23

veloped during long active stretches. In addition, we have24

also compared the responses of the VEXAT model to a25

popular Hill-type muscle model. The VEXAT model more26

accurately captures the impedance of biological muscle and27

its responses to long active stretches than a Hill-type model28

and can still reproduce the force-velocity and force-length29

relations of muscle. While the comparison between the30

VEXAT model and biological muscle is favorable, there are31

some phenomena that can be improved: the low frequency32

phase response of the model, and a mechanism to support33

passive force enhancement.34

1 Introduction 1

The stiffness and damping of muscle are properties of fun- 2

damental importance for motor control, and the accurate 3

simulation of muscle force. The central nervous system 4

(CNS) exploits the activation-dependent stiffness and damp- 5

ing (impedance) of muscle when learning new movements 6

[1], and when moving in unstable [2] or noisy environments 7

[3]. Reaching experiments using haptic manipulanda show 8

that the CNS uses co-contraction to increase the stiffness 9

of the arm when perturbed by an unstable force field [4]. 10

With time and repetition, the force field becomes learned 11

and co-contraction is reduced [1]. 12

The force response of muscle is not uniform, but varies 13

with both the length and time of perturbation. Under con- 14

stant activation and at a consistent nominal length, Kirsch et 15

al. [5] were able to show that muscle behaves like a linear- 16

time-invariant (LTI) system in response to small1 perturba- 17

tions: a spring-damper of best fit captured over 90% of the 18

observed variation in muscle force for small perturbations 19

(1-3.8% optimal length) over a wide range of bandwidths 20

(4-90Hz). When active muscle is stretched appreciably, titin 21

can develop enormous forces [7], [8], which may prevent 22

further lengthening and injury. The stiffness that best cap- 23

tures the response of muscle to the small perturbations of 24

Kirsch et al. [5] is far greater than the stiffness that best 25

captures the response of muscle to large perturbations [7], 26

[8]. Since everyday movements are often accompanied by 27

both large and small kinematic perturbations, it is important 28

to accurately capture these two processes. 29

However, there is likely no single muscle model that can 30

1Small in the context of an LTI system is larger than the short-range
of Rack and Westbury’s [6] short-range-stiffness: the response of an LTI
system can include both length and velocity dependence, while Rack
and Westbury’s [6] short-range ends where velocity dependence begins.
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replicate the force response of muscle to small [5] and large1

perturbations [7], [8] while also retaining the capability2

to reproduce the experiments of Hill [9] and Gordon et al.3

[10]. Unfortunately, this means that simulation studies that4

depend on an accurate representation of muscle impedance5

may reach conclusions well justified in simulation but not in6

reality. In this work, we focus on formulating a mechanistic7

muscle model2 that can replicate the force response of active8

muscle to length perturbations both great and small.9

There are predominantly three classes of models that are10

used to simulate musculoskeletal responses: phenomenolog-11

ical models constructed using Hill’s famous force-velocity12

relationship [9], mechanistic Huxley [11]–[13] models in13

which individual elastic crossbridges are incorporated, and14

linearized muscle models [14], [15] which are accurate for15

small changes in muscle length. Kirsch et al. [5] demon-16

strated that, for small perturbations, the force response of17

muscle is well represented by a spring in parallel with a18

damper. Neither Hill nor Huxley models are likely to repli-19

cate Kirsch et al.’s [5] experiments because a Hill muscle20

model [16], [17] does not contain any active spring el-21

ements; while a Huxley model lacks an active damping22

element. Although linearized muscle models can replicate23

Kirsch et al.’s experiment [5], these models are only accu-24

rate for small changes in length and cannot replicate the25

Hill’s nonlinear force-velocity relation [9], nor Gordon et26

al.’s [10] nonlinear force-length relation. However, there27

have been significant improvements to the canonical forms28

of phenomenological, mechanistic, and linearized muscle29

models that warrant closer inspection.30

Several novel muscle models have been proposed to im-31

prove upon the accuracy of Hill-type muscle models during32

large active stretches. Forcinito et al. [18] modeled the ve-33

locity dependence of muscle using a rheological element334

and an elastic rack rather than embedding the force-velocity35

relationship in equations directly, as is done in a typical Hill36

model [16], [17]. This modification allows Forcinito et al.’s37

[18] model to more faithfully replicate the force develop-38

ment of active muscle, as compared to a Hill-type model,39

during ramp length changes of ≈ 10%4 of the optimal CE40

length, and across velocities of 4− 11% of the maximum41

contraction velocity5. Tamura et al. [20] extended the work42

of Forcinito et al. [18] by formulating a rheological muscle43

2A Matlab implementation of the model and all simulated exper-
iments are available from https://github.com/mjhmilla/
Millard2023VexatMuscle under the branch elife2023.

3The term rheological is used because the model includes a compo-
nent that deforms with plastic flow in response to an applied force.

4a change of ±4mm to a typical cat soleus with an ℓMo = 41.7 ±
1.3mm [19]

58 − 20mm/s (vM
max) for a muscle with a maximum shortening

velocity of 180 mm/s [18]

model with two Maxwell elements (spring-damper in se- 1

ries) where one develops force quickly (high stiffness) and 2

the other develops force slowly (low stiffness). By carefully 3

selecting the dynamics that drive the two elements, Tamura 4

et al.’s [20] model replicated the force-length-velocity re- 5

lations [9], [10] as well as qualitatively reproducing both 6

the force and stiffness profiles [21] of force-enhancement 7

and force-depression [22]. Haeufle et al. [23] made use of 8

a serial-parallel network of spring-dampers to allow their 9

model to reproduce Hill’s force-velocity relationship [9] 10

mechanistically rather than embedding the experimental 11

curve directly in their model. Günther et al. [24] evaluated 12

how accurately a variety of spring-damper models were able 13

to reproduce the microscopic increases in crossbridge force 14

in response to small length changes. While each of these 15

models improves upon the force response of the Hill model 16

to ramp length changes, none are likely to reproduce Kirsch 17

et al.’s experiment [5] because the linearized versions of 18

these models lead to a serial, rather than a parallel, connec- 19

tion of a spring and a damper: Kirsch et al. [5] specifically 20

showed (see Figure 3 of [5]) that a serial connection of a 21

spring-damper fails to reproduce the phase shift between 22

force and length present in their experimental data. 23

Titin [25], [26] has been more recently investigated to 24

explain how lengthened muscle can develop active force 25

when lengthened both within, and beyond, actin-myosin 26

overlap [8]. Titin is a gigantic multi-segmented protein that 27

spans a half-sarcomere, attaching to the Z-line at one end 28

and the middle of the thick filament at the other end [27]. 29

In skeletal muscle, the two sections nearest to the Z-line, 30

the proximal immunoglobulin (IgP) segment and the PEVK 31

segment — rich in the amino acids proline (P), glutamate 32

(E), valine (V) and lysine (K) — are the most compliant 33

[28] since the distal immunoglobulin (IgD) segments bind 34

strongly to the thick filament [29]. Titin has proven to be 35

a complex filament, varying in composition and geometry 36

between different muscle types [30], [31], widely between 37

species [32], and can apply activation dependent forces to 38

actin [33]. It has proven challenging to determine which 39

interactions dominate between the various segments of titin 40

and the other filaments in a sarcomere. Experimental obser- 41

vations have reported titin-actin interactions at myosin-actin 42

binding sites [34], [35], between titin’s PEVK region and 43

actin [36], [37], between titin’s N2A region and actin [38], 44

and between the PEVK-IgD regions of titin and myosin 45

[39]. This large variety of experimental observations has 46

led to a correspondingly large number of proposed hypothe- 47

ses and models, most of which involve titin interacting with 48

actin [40]–[45], and more recently with myosin [46]. 49

The addition of a titin element to a model will result in 50

more accurate force production during large active length 51
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changes, but does not affect the stiffness and damping of1

muscle at modest sarcomere lengths because of titin’s rel-2

atively low stiffness. At sarcomere lengths of 1.62ℓMo or3

less, the stiffness of the actin-myosin load path with a sin-4

gle attached crossbridge (0.22 − 1.15 pN/nm) equals or5

exceeds the stiffness of 6 passive titin filaments (0.0348−6

0.173 pN/nm), and our estimated stiffness of 6 active titin7

filaments (0.0696−0.346 pN/nm, see Appendix A for fur-8

ther details). When fully activated, the stiffness of the actin-9

myosin load path (4.05 − 18.4 pN/nm) far exceeds that10

of both the passive titin (0.0348− 0.173 pN/nm), and our11

estimated active titin (0.0696− 0.346 pN/nm) load paths.12

Since titin-focused models have not made any changes to13

the modeled myosin-actin interaction beyond a Hill [16],14

[17] or Huxley [11], [12] model, it is unlikely that these15

models would be able to replicate Kirsch et al.’s experi-16

ments [5].17

Although most motor control simulations [2], [47]–[50]18

make use of the canonical linearized muscle model, phe-19

nomenological muscle models have also been used and20

modified to include stiffness. Sartori et al. [51] modeled21

muscle stiffness by evaluating the partial derivative of the22

force developed by a Hill-type muscle model with respect23

to the contractile element (CE) length. Although this ap-24

proach is mathematically correct, the resulting stiffness is25

heavily influenced by the shape of the force-length curve26

and can lead to inaccurate results: at the optimal CE length27

this approach would predict an active muscle stiffness of28

zero since the slope of the force-length curve is zero; on29

the descending limb this approach would predict a negative30

active muscle stiffness since the slope of the force-length31

curve is negative. In contrast, CE stiffness is large and32

positive near the optimal length [5], and there is no evi-33

dence for negative stiffness on the descending limb of the34

force-length curve [7]. Although the stiffness of the CE can35

be kept positive by shifting the passive force-length curve,36

which is at times used in finite-element-models of muscle37

[45], this introduces a new problem: the resulting passive38

CE stiffness cannot be lowered to match a more flexible39

muscle. In contrast, De Groote et al. [52], [53] modeled40

short-range-stiffness using a stiff spring in parallel with the41

active force element of a Hill-type muscle model. While the42

approach of De Groote et al. [52], [53] likely does improve43

the response of a Hill-type muscle model for small perturba-44

tions, there are several drawbacks: the short-range-stiffness45

of the muscle sharply goes to zero outside of the specified46

range whereas in reality the stiffness is only reduced [5]47

(see Fig. 9A); the damping of the canonical Hill-model has48

been left unchanged and likely differs substantially from49

biological muscle [5].50

In this work, we propose a model that can capture the51

force development of muscle to perturbations that vary 1

in size and timescale, and yet is described using only a 2

few states making it well suited for large-scale simulations. 3

When active, the response of the model to perturbations 4

within actin-myosin overlap is dominated by a viscoelas- 5

tic crossbridge element that has different dynamics across 6

time-scales: over brief time-scales the viscoelasticity of the 7

lumped crossbridge dominates the response of the muscle 8

[5], while over longer time-scales the force-velocity [9] 9

and force-length [10] properties of muscle dominate. To 10

capture the active forces developed by muscle beyond actin- 11

myosin overlap we added an active titin element which, 12

similar to existing models [40], [42], features an activation- 13

dependent6 interaction between titin and actin. To ensure 14

that the various parts of the model are bounded by reality, 15

we have estimated the physical properties of the viscoelastic 16

crossbridge element as well as the active titin element using 17

data from the literature. 18

While our main focus is to develop a more accurate mus- 19

cle model, we would like the model to be well suited to 20

simulating systems that contain tens to hundreds of mus- 21

cles. Although Huxley models have been used to simulate 22

whole-body movements such as jumping [54], the memory 23

and processing requirements associated with simulating a 24

single muscle with thousands of states is high. Instead of 25

modeling the force development of individual crossbridges, 26

we lump all of the crossbridges in a muscle together so that 27

we have a small number of states to simulate per muscle. 28

To evaluate the proposed model, we compare simulations 29

of experiments to original data. We examine the response 30

of active muscle to small perturbations over a wide band- 31

width by simulating the stochastic perturbation experiments 32

of Kirsch et al. [5]. Herzog et al.’s [7] active-lengthening 33

experiments are used to evaluate the response of the model 34

when it is actively lengthened within actin-myosin over- 35

lap. Next, we use Leonard et al.’s [8] active lengthening 36

experiments to see how the model compares to reality when 37

it is actively lengthened beyond actin-myosin overlap. In 38

addition, we examine how well the model can reproduce the 39

force-velocity experiments of Hill [9] and force-length ex- 40

periments of Gordon et al. [10]. Since Hill-type models are 41

so commonly used, we also replicate all of the simulated 42

experiments using Millard et al.’s [17] Hill-type muscle 43

model to make the differences between these two types of 44

models clear. 45

6Although activation normally refers to the presence of Ca2+ ions
in the sarcomere, Ca2+ ions alone are insufficient to cause titin to de-
velop enhanced lengthening forces. In addition, crossbridge attachment
appears to be necessary: when crossbridge attachment is inhibited titin
is not able to develop enhanced forces in the presence of Ca2+ during
lengthening [8].
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2 Model1

We begin by treating whole muscle as a scaled half-2

sarcomere that is pennated at an angle α with respect to a3

tendon (Fig. 1A). The assumption that mechanical prop-4

erties scale with size is commonly used when modeling5

muscle [16] and makes it possible to model vastly differ-6

ent musculotendon units (MTUs) by simply changing the7

architectural and contraction properties: the maximum iso-8

metric force fM
o , the optimal CE length ℓMo (at which the9

CE develops fM
o ), the pennation angle αo of the CE (at10

a length of ℓMo ) with respect to the tendon, the maximum11

shortening velocity vM
max of the CE, and the slack length of12

the tendon ℓTs . Many properties of sarcomeres scale with13

fM
o and ℓMo : fM

o scales with physiological cross-sectional14

area [55], the force-length property scales with ℓMo [56], the15

maximum normalized shortening velocity of different CE16

types scales with ℓMo across animals great and small [57],17

and titin’s passive-force-length properties scale from single18

molecules to myofibrils [58], [59]19

The proposed model has several additional properties20

that we assume scale with fM
o and inversely with ℓMo : the21

maximum active isometric stiffness kX
o and damping βX

o ,22

the passive forces due to the extracellular matrix (ECM),23

and passive forces due to titin. As crossbridge stiffness is24

well studied [60], we assume that muscle stiffness due to25

crossbridges scales such that26

kX
o = k̃X

o

fM
o

ℓMo
, (1)

where k̃X
o is the maximum normalized stiffness. This scal-27

ing is just what would be expected when many crossbridges28

[60] act in parallel across the cross-sectional area of the29

muscle, and act in series along the length of the muscle.30

Although the intrinsic damping properties of crossbridges31

are not well studied, we assume that the linear increase in32

damping with activation observed by Kirsch et al. [5] is33

due to the intrinsic damping properties of individual cross-34

bridges which will also scale linearly with fM
o and inversely35

with ℓMo36

βX
o = β̃X

o

fM
o

ℓMo
, (2)

where β̃X
o is the maximum normalized damping. For the37

remainder of the paper, we refer to the proposed model as38

the VEXAT model due to the viscoelastic (VE) crossbridge39

(X) and active-titin (AT) elements of the model.40

To reduce the number of states needed to simulate the41

VEXAT model, we lump all of the attached crossbridges42

into a single lumped crossbridge element (XE) that attaches43

at ℓS (Fig. 1A) and has intrinsic stiffness and damping44

properties that vary with the activation and force-length45

B) Actin-crossbridge-myosin active load path

Z-lineZ-line M-line

D) ECM & titin passive load paths

Z-lineZ-line M-line

Negligible titin-actin 
interaction when 
muscle is deactivated 

Compressive element to 
prevent unrealistically 
short CE lengths 

C) Actin-titin active load path

Z-lineZ-line M-line

Viscous coupling proportional to 
activation between titin and actin
 

Segments of Titin
Z-lineZ-line M-line

ℓS ℓX LM
ℓM

ℓECM
ℓ2ℓ1 LIgD

Normalized Half Sarcomere Model TendonA)

PEVK
N2A

IgP
IgDT12

𝛼

bound to myosin

bound to myosinℓ1 ℓ2

XE

KE

LT12

Spring

Damper
Lumped cross-bridge 
attachment point

Titin-actin point of 
interaction

Figure 1: The name of the VEXAT model comes from the
viscoelastic crossbridge and active titin elements (A.) in the
model. Active tension generated by the lumped crossbridge
flows through actin, myosin, and the adjacent sarcomeres
to the attached tendon (B.). Titin is modeled as two springs
of length ℓ1 and ℓ2 in series with the rigid segments LT12

and L IgD. Viscous forces act between titin and actin in pro-
portion to the activation of the muscle (C.), which reduces
to negligible values in a purely passive muscle (D.). We
modeled actin and myosin as rigid elements; the XE, titin,
and the tendon as viscoelastic elements; and the ECM as an
elastic element.
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properties of muscle. The active force developed by the XE1

at the attachment point to actin is transmitted to the main2

myosin filament, the M-line, and ultimately to the tendon3

(Fig. 1B). In addition, since the stiffness of actin [61] and4

myosin filaments [62] greatly exceeds that of crossbridges5

[63], we treat actin and myosin filaments as rigid to re-6

duce the number of states needed to simulate this model.7

Similarly, we have lumped the six titin filaments per half-8

sarcomere (Fig. 1A) together to further reduce the number9

of states needed to simulate this model.10

The addition of a titin filament to the model introduces11

an additional active load-path (Fig. 1C) and an additional12

passive load-path (Fig. 1D). As is typical [16], [17], we13

assume that the passive elasticity of these structures scale14

linearly with fM
o and inversely with ℓMo . Since the VEXAT15

model has two passive load paths (Fig. 1D), we further16

assume that the proportion of the passive force due to the17

extra-cellular-matrix (ECM) and titin does not follow a18

scale dependent pattern, but varies from muscle-to-muscle19

as observed by Prado et al. [59].20

As previously mentioned, there are several theories to ex-21

plain how titin interacts with the other filaments in activated22

muscle. While there is evidence for titin-actin interaction23

near titin’s N2A region [38], there is also support for a titin-24

actin interaction occurring near titin’s PEVK region [36],25

[37], and for a titin-myosin interaction near the PEVK-IgD26

region [39]. For the purposes of our model, we will assume27

a titin-actin interaction because current evidence weighs28

more heavily towards a titin-actin interaction than a titin-29

myosin interaction. Next, we assume that the titin-actin30

interaction takes place somewhere in the PEVK segment31

for two reasons: first, there is evidence for a titin-actin32

interaction [36], [37] in the PEVK segment; and second,33

there is evidence supporting an interaction at the proximal34

end of the PEVK segment (N2A-actin interaction) [38]. We35

have left the point within the PEVK segment that attaches36

to actin as a free variable since there is some uncertainty37

about what part of the PEVK segment interacts with actin.38

The nature of the mechanical interaction between titin39

and the other filaments in an active sarcomere remains40

uncertain. Here we assume that this interaction is not a rigid41

attachment, but instead is an activation dependent damping42

to be consistent with the observations of Kellermayer and43

Granzier [33] and Dutta et al. [38]: adding titin filaments44

and calcium slowed, but did not stop, the progression of45

actin filaments across a plate covered in active crossbridges46

(an in-vitro motility assay). When activated, we assume47

that the amount of damping between titin and actin scales48

linearly with fM
o and inversely with ℓMo .49

After lumping all of the crossbridges and titin filaments50

together we are left with a rigid-tendon MTUmodel that has51

two generalized positions 1

qR = (ℓS, ℓ1) (3)

and an elastic-tendon MTUmodel that has three generalized 2

positions 3

qE = (ℓM, ℓS, ℓ1). (4)

Given these generalized positions, the path length ℓP, and 4

a pennation model, all other lengths in the model can be 5

calculated. Here we use a constant thickness 6

H = ℓMo sinαo (5)

pennation model to evaluate the pennation angle 7

α = arctan

(
H

ℓP − ℓTs

)
(6)

of a CE with a rigid-tendon, and 8

α = arcsin

(
H

ℓM

)
(7)

to evaluate the pennation angle of a CE with an elastic- 9

tendon. We have added a small compressive element KE 10

(Fig. 1A) to prevent the model from reaching the numerical 11

singularity that exists as ℓ̃M approaches ℓ̃Mmin, the length at 12

which α → 90◦ in Eqns. 6 and 7. The tendon length 13

ℓT = ℓP − ℓM cosα, (8)

of an elastic-tendon model is the difference between the 14

path length and the CE length along the tendon. The length 15

of the XE 16

ℓX =
1

2
ℓM − (ℓS + LM) (9)

is the difference between the half-sarcomere length and the 17

sum of the average point of attachment ℓS and the length 18

of the myosin filament LM. The length of ℓ2, the lumped 19

PEVK-IgD segment, is 20

ℓ2 =
1

2
ℓM − (ℓ1 + LT12 + L IgD) (10)

the difference between the half-sarcomere length and the 21

sum of the length from the Z-line to the actin binding site 22

on titin (ℓ1) and the length of the IgD segment that is bound 23

to myosin (L IgD). Finally, the length of the extra-cellular- 24

matrix ℓECM is simply 25

ℓECM =
1

2
ℓM (11)

half the length of the CE since we are modeling a half- 26

sarcomere. 27

5



Figure 2: The model relies on Bézier curves to model the nonlinear effects of the active-force-length curve, the passive-
force-length curves (A.), and the force-velocity curve (B.). Since nearly all of the reference experiments used in Sec. 3
have used cat soleus, we have fit the active-force-length curve (f L(·)) and passive-force-length curves (f PE(·)) to the cat
soleus data of Herzog and Leonard 2002 [7]. The concentric side of the force-velocity curve (fV(·)) has been fitted to the
cat soleus data of Herzog and Leonard 1997 [64].

We have some freedom to choose the state vector of the1

model and the differential equations that define how the2

muscle responds to length and activation changes. The3

experiments we hope to replicate depend on phenomena4

that take place at different time-scales: Kirsch et al.’s [5]5

stochastic perturbations evolve over brief time-scales, while6

all of the other experiments take place at much longer time-7

scales. Here we mathematically decouple phenomena that8

affect brief and long time-scales by making a second-order9

model that has states of the average point of crossbridge10

attachment ℓS, and velocity vS. When the activation a11

state and the titin-actin interaction model are included, the12

resulting rigid-tendon model that has a total of four states13

x = (a, vS, ℓS, ℓ1) (12)

and the elastic-tendon model has14

x = (a, vS, ℓS, ℓ1, ℓM) (13)

five states. For the purpose of comparison, a Hill-type15

muscle model with a rigid-tendon has a single state (a),16

while an elastic-tendon model has two states (a and ℓM)17

[17].18

Before proceeding, a small note on notation: through-19

out this work we will use an underbar to indicate a vec-20

tor, bold font to indicate a curve, a tilde for a normalized21

quantity, and a capital letter to indicate a constant. Unless22

indicated otherwise, curves are constructed using C2 contin-23

uous7 Bézier splines so that the model is compatible with24

gradient-based optimization. Normalized quantities within25

7Which means that the second derivative of the curve is continuous.

the CE follow a specific convention: lengths and velocities 1

are normalized by the optimal CE length ℓMo , forces by 2

the maximum active isometric tension fM
o , stiffness and 3

damping by fM
o /ℓMo . Velocities used as input to the force- 4

velocity relation fV are further normalized by vM
max and 5

annotated using a hat: v̂M = vM/vM
max. Tendon lengths 6

and velocities are normalized by ℓTs tendon slack length, 7

while forces are normalized by fM
o . 8

To evaluate the state derivative of the model, we require 9

equations for ȧ, v̇S, v 1, and vM if the tendon is elastic. 10

For ȧ we use of the first order activation dynamics model 11

described in Millard et al. [17]8 which uses a lumped first 12

order ordinary-differential-equation (ODE) to describe how 13

a fused tetanus electrical excitation leads to force develop- 14

ment in an isometric muscle. We formulated the equation 15

for v̇S with the intention of having the model behave like 16

a spring-damper over small time-scales, but to converge to 17

the tension developed by a Hill-type model 18

f̃M = af L(ℓ̃M)fV(v̂M) + f PE(ℓ̃M) (14)

over longer time-scales, where f L(·) is the active-force- 19

length curve (Fig. 2A), f PE(·) is the passive-force-length 20

curve (Fig. 2A), and fV(·) is the force-velocity (Fig. 2B). 21

The normalized tension developed by the VEXAT model 22

f̃M = af L(ℓ̃S + L̃M)
(
k̃X
o ℓ̃X + β̃X

o ṽX
)

+f 2(ℓ̃ 2) + f ECM(ℓ̃ ECM)

+β̃ ϵṽM − f KE(ℓ̃ M)

cosα
(15)

8For readers who require an activation model with continuity to the
second-derivative, the model of De Groote et al. [65] is recommended.
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differs from that of a Hill model, Eqn. 14, because it has1

no explicit dependency on ṽM, includes four passive terms,2

and a lumped viscoelastic crossbridge element. The four3

passive terms come from the ECM element f ECM(ℓ̃ ECM)4

(Fig. 3A), the PEVK-IgD element f 2(ℓ̃ 2) (Fig. 3A and B),5

the compressive term f KE(ℓ̃ M) (prevents ℓ̃ M cosα from6

reaching a length of 0), and a numerical damping term7

β̃ ϵṽM (where β̃ ϵ is small). The active force developed by8

the XE’s lumped crossbridge k̃X
o ℓ̃X+β̃X

o ṽX is scaled by the9

fraction of the XE that is active and attached, af L(ℓ̃S+L̃M),10

where f L(·) is the active-force-length relation (Fig. 2A).11

We evaluate f L using ℓ̃S + L̃M in Eqn. 15, rather than ℓ̃M12

as in Eqn. 14, since actin-myosin overlap is independent13

of crossbridge strain. With f̃M derived, we can proceed to14

model the acceleration of the CE, v̇S, so that it is driven15

over time by the force imbalance between the XE’s active16

tension and that of a Hill model.17

We set the first term of ˙̃vS so that, over time, the CE18

is driven to develop the same active tension as a Hill-type19

model [17] (terms highlighted in blue)20

˙̃vS =
(
af L(ℓ̃S + L̃M)(k̃X

o ℓ̃X + β̃X
o ṽX)

− af L(ℓ̃S + L̃M)fV(v̂S)
)
/τ S

−DṽS + e−(a/aL)
2
(GLℓ̃

X +GVṽ
X) (16)

where τ S is a time constant and fV(v̂S) is the force-velocity21

curve (Fig. 2B). The rate of adaptation of the model’s ten-22

sion, to the embedded Hill model, is set by the time constant23

τ S: as τ S is decreased the VEXAT model converges more24

rapidly to a Hill-type model; as τ S is increased the active25

force produced by the model will look more like a spring-26

damper. Our preliminary simulations indicate that there is27

a trade-off to choosing τ S: when τ S is large the model will28

not shorten rapidly enough to replicate Hill’s experiments,29

while if τ S is small the low-frequency response of the model30

is compromised when Kirsch et al.’s [5] experiments are31

simulated.32

The remaining two terms, DṽS and e−(a/aL)
2
(GLℓ̃

X +33

GVṽ
X), have been included for numerical reasons spe-34

cific to this model formulation rather than muscle phys-35

iology. We include a term that damps the rate of actin-36

myosin translation, DṽS, to prevent this second-order37

system from unrealistically oscillating9. The final term38

e−(a/aL)
2
(GLℓ̃

X + GVṽ
X), where GL and GV are scalar39

gains, and aL is a low-activation threshold (aL is 0.05 in40

this work). This final term has been included as a conse-41

quence of the generalized positions we have chosen. When42

9Note that we have used the symbols D, and not β, because the D
terms damp the acceleration of actin-myosin movement and as such
cannot be interpreted as a viscous damping term. In contrast, viscous
damping terms are indicated using the β symbol.

the CE is nearly deactivated (as a approaches aL), this term 1

forces ℓ̃S and ṽS to shadow the location and velocity of 2

the XE attachment point. This ensures that if the XE is 3

suddenly activated, that it attaches with little strain. We had 4

to include this term because we made ℓS a state variable, 5

rather than ℓX. We chose ℓS as a state variable, rather than 6

ℓX, so that the states are more equally scaled for numerical 7

integration. 8

The passive force developed by the CE in Eqn. 15 is 9

the sum of the elastic forces (Fig. 3A) developed by the 10

force-length curves of titin (f 1(ℓ̃ 1) and f 2(ℓ̃ 2)) and the 11

ECM (f ECM(ℓ̃ ECM)). We model titin’s elasticity as being 12

due to two serially connected elastic segments: the first 13

elastic segment f 1(ℓ̃ 1) is formed by lumping together the 14

IgP segment and a fraction Q of the PEVK segment, while 15

the second elastic segment f 2(ℓ̃ 2) is formed by lumping 16

together the remaining (1−Q) of the PEVK segment with 17

the free IgD section. Our preliminary simulations of Herzog 18

and Leonard’s active lengthening experiment [7] indicate 19

that a Q value of 0.5, positioning the PEVK-actin attach- 20

ment point that is near the middle of the PEVK segment, 21

allows the model to develop sufficient tension when actively 22

lengthened. The large section of the IgD segment that is 23

bound to myosin is treated as rigid. 24

The curves that form f ECM(ℓ̃ ECM), f 1(ℓ̃ 1), and f 2(ℓ̃ 2) 25

have been carefully constructed to satisfy three experimen- 26

tal observations: that the total passive force-length curve of 27

titin and the ECM match the observed passive force-length 28

curve of the muscle (Fig. 2A and Fig. 3A) [59]; that the pro- 29

portion of the passive force developed by titin and the ECM 30

is within experimental observations [59] (Fig. 3A); and that 31

the Ig domains and PEVK residues show the same relative 32

elongation as observed by Trombitás et al. [28] (Fig. 3C). 33

Even though Trombitás et al.’s [28] measurements come 34

from human soleus titin, we can construct the force-length 35

curves of other titin isoforms if the number of proximal Ig 36

domains, PEVK residues, and distal Ig domains are known 37

(see Appendix B.3). Since the passive–force-length rela- 38

tion and the results of Trombitás et al. [28] are at modest 39

lengths, we consider two different extensions to the force- 40

length relation to simulate extreme lengths: first, a simple 41

linear extrapolation; second, we extend the force-length 42

relation of each of titin’s segments to follow a worm-like- 43

chain (WLC) model [66] (see Appendix B.3 for details on 44

the WLC model). With titin’s passive force-length relations 45

defined, we can next consider what happens to titin in active 46

muscle. 47

When active muscle is lengthened, it produces an en- 48

hanced force that persists long after the lengthening has 49

ceased called residual force enhancement (RFE) [7]. For 50

the purposes of the VEXAT model, we assume that RFE is 51
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Figure 3: The passive force-length curve has been decomposed such that 56% of it comes from the ECM while 44%
comes from titin to match the average of ECM-titin passive force distribution (which ranges from 43%-76%) reported
by Prado et al. [59] (A.). The elasticity of the titin segment has been further decomposed into two serially connected
sections: the proximal section consisting of the T12, proximal IgP segment and part of the PEVK segment, and the distal
section consisting of the remaining PEVK section and the distal Ig segment (B.). The stiffness of the IgP and PEVK
segments has been chosen so that the model can reproduce the movements of IgP/PEVK and PEVK/IgD boundaries
that Trombitás et al. [28] (C.) observed in their experiments. The curves that appear in subplots A. and B. come from
scaling the two-segmented human soleus titin model to cat soleus muscle. The curves that appear in subplot C compare
the human soleus titin model’s IgP, PEVK, and IgD force-length relations to the data of Trombitás et al. [28] (see in
Appendix B for details).

produced by titin. Experiments have demonstrated RFE on1

both the ascending limb [67] and descending limb of the2

force-length [7] relation. The amount of RFE depends both3

on the final length of the stretch [68] and the magnitude of4

the stretch: on the ascending limb the amount of RFE varies5

with the final length but not with stretch magnitude, while6

on the descending limb RFE varies with stretch magnitude.7

To develop RFE, we assume that some point of the PEVK8

segment bonds with actin through an activation-dependent9

damper. The VEXAT model’s distal segment of titin, ℓ2,10

can contribute to RFE when the titin-actin bond is formed11

and CE is lengthened beyond ℓ̃Ms , the shortest CE length12

at which the PEVK-actin bond can form. In this work,13

we set ℓ̃Ms to be equal to the slack length of the CE’s force-14

length relation ℓ̃PEs (see Table 1E and H). To incorporate the15

asymmetric length dependence of RFE [68], we introduce16

a smooth step-up function17

uS =
1

2
+

1

2
tanh

(
ℓ̃M − ℓ̃Ms

R

)
(17)

that transitions from zero to one as ℓ̃M extends beyond18

ℓ̃Ms , where the sharpness of the transition is controlled by19

R. Similar to Hisey et al.’s experimental work [68], active 1

lengthening on the ascending limb will produce similar 2

amounts of RFE since ℓ̃Ms < ℓMo and the titin-actin bond is 3

prevented from forming below ℓ̃Ms . In contrast, the amount 4

of RFE on the descending limb increases with increasing 5

stretch magnitudes since the titin-actin bond is able to form 6

across the entire descending limb. 7

At very long CE lengths, the modeled titin-actin bond 8

can literally slip off of the end of the actin filament (Fig. 9

1A) when the distance between the Z-line and the bond, 10

ℓ̃1 + L̃T12, exceeds the length of the actin filament, L̃A. To 11

break the titin-actin bond at long CE lengths we introduce 12

a smooth step-down function 13

uL =
1

2
− 1

2
tanh

(
(ℓ̃1 + L̃T12)− L̃A

R

)
. (18)

The step-down function uL transitions from one to zero 14

when the titin-actin bond (ℓ̃1 + L̃T12) reaches L̃A, the end 15

of the actin filament. 16

The strength of the titin-actin bond also appears to vary 17

nonlinearly with activation. Fukutani and Herzog [69] 18

observed that the absolute RFE magnitude produced by 19
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actively lengthened fibers is similar between normal and1

reduced contractile force states. Since these experiments2

[69] were performed beyond the optimal CE length, titin3

could be contributing to the observed RFE as previously4

described. The consistent pattern of absolute RFE values5

observed by Fukutani and Herzog [69] could be produced6

if the titin-actin bond saturated at its maximum strength7

even at a reduced contractile force state. To saturate the8

titin-actin bond, we use a final smooth step function9

uA = 1− e
−
(

a

A◦

)2

(19)

where A◦ is the threshold activation level at which the bond10

saturates. While we model the strength of the titin-actin11

bond as being a function of activation, which is propor-12

tional Ca2+ concentration [70], this is a mathematical con-13

venience. The work of Leonard et al. [8] makes it clear that14

both Ca2+ and crossbridge cycling are needed to allow titin15

to develop enhanced forces during active lengthening: no16

enhanced forces are observed in the presence of Ca2+ when17

crossbridge cycling is chemically inhibited. Putting this all18

together, the active damping acting between the titin and19

actin filaments is given by the product of uA uS uL βPEVK
A ,20

where βPEVK
A is the maximum damping coefficient.21

With a model of the titin-actin bond derived, we can fo-22

cus on how the bond location moves in response to applied23

forces. Since we are ignoring the mass of the titin filament,24

the PEVK-attachment point is balanced by the forces ap-25

plied to it and the viscous forces developed between titin26

and actin27

(uA uS uL βPEVK
A + βPEVK

P )ṽ 1 = f 1(ℓ̃ 1)− f 2(ℓ̃ 2) (20)

due to the active (uA uS uL βPEVK
A ) and a small amount of28

passive damping (βPEVK
P ). Since Eqn. 20 is linear in ṽ 1,29

we can solve directly for it30

ṽ 1 =
f 2(ℓ̃ 2)− f 1(ℓ̃ 1)

uA uS uL βPEVK
A + βPEVK

P

. (21)

The assumption of whether the tendon is rigid or elastic31

affects how the state derivative is evaluated and how expen-32

sive it is to compute. While all of the position dependent33

quantities can be evaluated using Eqns. 6-11 and the gener-34

alized positions, evaluating the generalized velocities of a35

rigid-tendon and elastic-tendon model differ substantially.36

The CE velocity vM and pennation angular velocity α̇ of37

a rigid-tendon model can be evaluated directly given the38

path length, velocity, and the time derivatives of Eqns. 639

and 8. After v 1 is evaluated using Eqn. 21, the velocities40

of the remaining segments can be evaluated using the time41

derivatives of Eqns. 9-11.42

Evaluating the CE rate of lengthening, vM, for an elastic- 1

tendon muscle model is more involved. As is typical of 2

lumped parameter muscle models [16], [17], [71], here we 3

assume that difference in tension, f̃ ϵ, between the CE and 4

the tendon 5

f̃ ϵ = f̃M cosα− f T ≈ 0 (22)

is negligible10. During our preliminary simulations it be- 6

came clear that treating the tendon as an idealized spring 7

degraded the ability of the model to replicate the experiment 8

of Kirsch et al. [5] particularly at high frequencies. Kirsch 9

et al. [5] observed a linear increase in the gain and phase 10

profile between the output force and the input perturbation 11

applied to the muscle. This pattern in gain and phase shift 12

can be accurately reproduced by a spring in parallel with a 13

damper. Due to the way that impedance combines in series 14

11, the models of both the CE and the tendon need to have 15

parallel spring and damper elements so that the entire MTU, 16

when linearized, appears to be a spring in parallel with a 17

damping element. We model tendon force using a nonlinear 18

spring and damper model 19

f T = f T(ℓ̃T) + U k̂
T
(ℓ̃T) ṽT (23)

where the damping coefficient U k̂
T
(ℓ̃T), is a linear scal- 20

ing of the normalized tendon stiffness k̂
T

by U , a constant 21

scaling coefficient. We have chosen this specific damping 22

model because it fits the data of Netti et al. [73] and cap- 23

tures the structural coupling between tendon stiffness and 24

damping (see Appendix B.1 and Fig. 15 for further details). 25

Now that all of the terms in Eqn. 22 have been explicitly 26

defined, we can use Eqn. 22 to solve for vM. Equation 22 27

becomes linear in vM after substituting the force models 28

described in Eqns. 23 and 15, and the kinematic model 29

equations described in Eqns. 8, 9 and 11 (along with the 30

time derivatives of Eqns. 8-11). After some simplification 31

10Physically this assumption is equivalent to treating the CE and the
tendon as massless. In general, this assumption is quite reasonable since
a cubic centimeter of muscle has a mass of roughly 1.0 g but can generate
tensions of between 35-137 N [72]. With such a low mass and a high
maximum isometric force, the cubic centimeter of muscle would have
to be accelerated at an incredible 3,500-13,700 m/s2 before the inertial
forces would be within 10% of the maximum isometric tension. Since
everyday movements require comparatively tiny accelerations, ignoring
inertial forces of muscle results in relatively small errors.

11The impedance (z) of two serially connected components (z1 and
z2) is given by 1/z = 1/z1 + 1/z2, or z = (z1 z2)/(z1 + z2)
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we arrive at1

ṽM =
(
(af L(ℓ̃S + L̃M) (k̃X

o ℓ̃X + β̃X
o ṽS)

+f 2(ℓ̃ 2) + f ECM(ℓ̃ ECM)) cosα

−f KE(ℓ̃ M)− f T(ℓ̃T)− U k̂
T
(ℓ̃T) vP/ℓTs

)
/
(
−aβ̃X

o f L(ℓ̃S + L̃M)/(2ℓ̃ M)

−(β̃ ϵ + f ECM(ℓ̃ ECM)) cosα/(2ℓ̃ M)

−U k̂
T
(ℓ̃T)/(ℓTs cosα)

)
(24)

allowing us to evaluate the final state derivative in ẋ. Dur-2

ing simulation the denominator of ṽM will always be finite3

since β̃ ϵ > 0, and α < 90◦ due to the compressive element.4

The evaluation of ẋ in the VEXAT model is free of numeri-5

cal singularities, giving it an advantage over a conventional6

Hill-type muscle model [17]. In addition, the VEXAT’s ẋ7

does not require iteration to numerically solve a root, giving8

it an advantage over a singularity-free formulation of the9

Hill model [17]. As with previous models, initializing the10

model’s state is not trivial and required the derivation of a11

model-specific method (see Appendix C for details).12

3 Biological Benchmark Simulations13

In order to evaluate the model, we have selected three ex-14

periments that capture the responses of active muscle to15

small, medium, and large length changes. The small (1-16

3.8% ℓMo ) stochastic perturbation experiment of Kirsch et17

al. [5] demonstrates that the impedance of muscle is well18

described by a stiff spring in parallel with a damper, and19

that the spring-damper coefficients vary linearly with active20

force. The active impedance of muscle is such a fundamen-21

tal part of motor learning that the amount of impedance,22

as indicated by co-contraction, is used to define how much23

learning has actually taken place [1], [77]: co-contraction24

is high during initial learning, but decreases over time as a25

task becomes familiar. The active lengthening experiment26

of Herzog and Leonard [7] shows that modestly stretched27

(7-21% ℓMo ) biological muscle has positive stiffness even28

on the descending limb of the active force-length curve29

(ℓMo > 1). In contrast, a conventional Hill model [16],30

[17] can have negative stiffness on the descending limb31

of the active-force-length curve, a property that is both32

mechanically unstable and unrealistic. The final active33

lengthening experiment of Leonard et al. [8] unequivo-34

cally demonstrates that the CE continues to develop ac-35

tive forces during extreme lengthening (329% ℓMo ) which36

exceeds actin-myosin overlap. Active force development37

beyond actin-myosin overlap is made possible by titin, and38

its activation dependent interaction with actin [8]. The 1

biological benchmark simulations conclude with a replica- 2

tion of the force-velocity experiments of Hill [9] and the 3

force-length experiments of Gordon et al. [10]. 4

The VEXAT model requires the architectural muscle 5

parameters (fM
o , ℓMo , αo, vM

max, and ℓTs ) needed by a con- 6

ventional Hill-type muscle model as well as additional pa- 7

rameters. The additional parameters are needed for these 8

component models: the compressive element (Eqn. 15 and 9

24), the lumped viscoelastic XE (Eqn. 1 and 2) , XE-actin 10

dynamics (Eqn. 16), the two-segment active titin model 11

(Fig. 3), titin-actin dynamics (Eqns. 21), and the tendon 12

damping model (Eqn. 23). Fortunately, there is enough 13

experimental data in the literature that values can be found, 14

fitted, or estimated directly for our simulations of experi- 15

ments on cat soleus (Table 1), and rabbit psoas fibrils (see 16

Appendix B for fitting details and Appendix H for rabbit 17

psoas fibril model parameters). The parameter values we 18

have established for the cat soleus (Table 1 F.-I.) can serve 19

as initial values when modeling other mammalian MTU’s 20

because these parameters have been normalized (by fM
o , 21

ℓMo , and ℓTs where appropriate) and will scale appropriately 22

given the architectural properties of a different MTU. By 23

making use of these default values, the VEXAT model can 24

be made to represent another MTU using exactly the same 25

number of parameters as a Hill-type muscle model (Table 26

1A.-E.). 27

3.1 Stochastic Length Perturbation Experiments 28

In Kirsch et al.’s [5] in-situ experiment, the force response 29

of a cat’s soleus muscle under constant stimulation was mea- 30

sured as its length was changed by small amounts. Kirsch 31

et al. [5] applied stochastic length perturbations (Fig. 4A) 32

to elicit force responses from the muscle (in this case a 33

spring-damper Fig. 4B) across a broad range of frequencies 34

(4-90 Hz) and across a range of small length perturbations 35

(1-3.8% ℓMo ). The resulting time-domain signals can be 36

quite complicated (Fig. 4A and B) but contain rich mea- 37

surements of how muscle transforms changes in length into 38

changes in force. 39

As long as muscle can be considered to be linear (a si- 40

nusoidal change in length produces a sinusoidal change in 41

force), then system identification methods [78], [79] can be 42

applied to extract a relationship between length x(t) and 43

force y(t). We will give a brief overview of system identi- 44

fication methods here to make methods and results clearer. 45

First, the time-domain signals (x(t) and y(t)) are trans- 46

formed into an equivalent representation in the frequency- 47

domain (X(s) and Y (s)) as a sum of scaled and shifted 48

sine curves (Fig. 4B and C) using a Fourier transform [78]. 49

In the frequency domain, we identify an LTI system of best 50
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Table 1: The VEXAT and Hill model’s elastic-tendon cat soleus MTU parameters. The VEXAT model uses all of the
Hill model’s parameters which are highlighted in grey. Short forms are used to indicate: length ‘len’, velocity ‘vel’,
acceleration ‘acc’, half ‘h’, activation ‘act’, segment ‘seg’, threshold ‘thr’, and stiffness ‘stiff’. The letters ‘R’ or ‘H’
in front of a reference mean the data is from a rabbit or a human, otherwise the data is from cat soleus. The letters
following a reference indicate how the data was used to create the parameter: ‘C’ calculated, ‘F’ fit, ‘E’ estimated, or ‘S’
scaled. Most of the VEXAT model’s XE and titin parameters can be used as rough parameter guesses for other muscles
because we have expressed these parameters in a normalized space: the values will scale appropriately with changes to
ℓMo and fM

o . Titin’s force-length curves, however, should be updated if N IgP, NPEVK, or N IgD differ from the values
shown below (see Appendix B.3 for details). Note that the rigid-tendon cat soleus parameters differ from the table below
because tendon elasticity affects the fitting of k̃X

o , β̃X
o , f PE, f 1(ℓ̃ 1), and f 2(ℓ̃ 2). Finally, the parameters related to the

compressive element (F.), the XE (G.), and titin (H. and I.) can be used as initial values when simulating the MTU’s other
mammals. By making use of these defaults the VEXAT model requires the same number of parameters as a Hill-type
muscle model (A.—E.).

Parameter Value Source
A. Basic parameters

Max iso force fM
o 21.5N [7]F

Opt CE len ℓMo 42.9mm [7]F
Pen angle α 7.00◦ [19]
Act time const τA 113ms [7]F
De-act time const τD 142ms [7]F

B. Force-velocity relation: fV(v̂M)

Max shortening vel vM
max 4.65

ℓM
o

s [74]F
fV at − 1

2v
M
max f̃V

1 0.126 fM
o [74]F

fV at v̂M = +0 f̃V
2 1.40 fM

o [7]F
fV at vM

max f̃V
3 1.55 fM

o [7]E
vM
max scaling sV 0.950 [9]F

C. Tendon model: f T(ℓ̃T), U k̂
T
(ℓ̃T)

Slack len ℓTs 30.5mm [75]S

Stiffness k̃To 30.0
f M
o

ℓT
s

[75]
Strain at fM

o eTo 0.0458 [75]
Toe force f T

toe
2
3f

M
o [75]E

Damping U 0.057 s R[73]F
D. Active force-length relation: f L(ℓ̃M)

Opt sarcomere len LM
◦ 2.43µm [76]

Actin len L̃A 0.462 ℓMo [76]
Myosin h-len L̃M 0.330 ℓMo [76]
Myosin bare h-len L̃B 0.0175 ℓMo [76]
Offset ∆L − 2

k̃X
o

ℓMo C

E. Passive force-length relation: f PE(ℓ̃M)

Slack len ℓ̃PE
s 0.872 ℓMo [7]F

Toe len ℓ̃PE
toe 1.39 ℓMo [7]F

Toe force f̃ PE
toe 1.00 fM

o [7]F

Toe stiffness k̃PE
toe 3.88

f M
o

ℓM
o

[7]F
F. Compressive force-length relation: f KE(ℓ̃M)

Slack len ℓ̃PE
s

1
10ℓ

M
o E

Toe len ℓ̃PE
toe 0.00 ℓMo E

Toe force f̃ PE
toe 1.00 fM

o E

Parameter Value Source
G. XE viscoelastic model

Stiffness k̃X
o 49.1 f M

o

ℓM
o

[5]F:Fig.12

Damping β̃X
o 0.347 f M

o

ℓM
o /s [5]F:Fig.12

Acc. time const τ S 1.00e-3 s [5], [9]E
Num acc damping D 1.00 [5], [9]E
Low act threshold aL 0.0500 [5], [9]E
Len tracking gain GL 1000 1

s [5], [9]E
Vel tracking gain GV 1000 [5], [9]E

H. Titin & ECM Parameters
ECM fraction P 56% R[59]
PEVK attach pt Q 0.625 [7]F
Z-line–T12 len L̃T12 0.0412 ℓMo H[66]
IgD rigid h-len L̃ IgD L̃M [76]
No IgP domains N IgP 60.5 H[66]S
No PEVK residues NPEVK 1934.7 H[66]S
No IgD domains N IgD 19.5 H[66]S

Active damping βPEVK
A 71.9

f M
o

ℓM
o

[7]F

Passive damping βPEVK
P 0.1

f M
o

ℓM
o

E
Length threshold ℓ̃Ms

1
2 ℓ̃

PE
s E

Act threshold A◦ 0.05 E
Step transition R 0.01 E

I. Titin’s force-length relations: f 1(ℓ̃ 1) & f 2(ℓ̃ 2)

f 1(ℓ̃ 1) slack len ℓ̃1S 0.0739 ℓMo H[66]S, [7]F
f 1(ℓ̃ 1) toe len ℓ̃1toe 0.1590 ℓMo H[66]S,[7]F
f 1(ℓ̃ 1) toe force f̃1

toe (1− P) fM
o H[66]S,[7]F

f 1(ℓ̃ 1) toe stiff k̃ 1
toe 5.17

f M
o

ℓM
o

H[66]S,[7]F
f 2(ℓ̃ 2) slack len ℓ̃2S 0.0454 ℓMo H[66]S,[7]F
f 2(ℓ̃ 2) toe len ℓ̃2toe 0.0977 ℓMo H[66]S,[7]F
f 2(ℓ̃ 2) toe force f̃2

toe (1− P)fM
o H[66]S,[7]F

f 2(ℓ̃ 2) toe stiff k̃ 2
toe 8.42

f M
o

ℓM
o

H[66]S,[7]F

fit H(s) that describes how muscle transforms changes in1

length into changes in force such that Y (s) = H(s)X(s).2

Next, we evaluate how H(s) scales the magnitude (gain)3

and shifts the timing (phase) of a sinusoid in X(s) into a4

sinusoid of the same frequency in Y (s) (Fig. 4D). This 1

process is repeated across all frequency-matched pairs of in- 2

put and output sinusoids to build a function of how muscle 3

scales (Fig. 4E) and shifts (Fig. 4F) input length sinusoids 4

11



A B

Gain = A/B

       = 1.6/0.8

       = 2

TΔt Phase = Δt 2
T

=(  /3 radians,

or 60o)
0.8

-0.8

Input Output

B. C.

D.

E.

F.

Input
Output

Figure 4: Evaluating a system’s gain and phase response
begins by applying a pseudo-random input signal to the sys-
tem and measuring its output (A). Both the input and output
signals (A) are transformed into the frequency domain by
expressing these signals as an equivalent sum of scaled and
shifted sinusoids (simple example shown in B and C). Each
individual input sinusoid is compared with the output si-
nusoid of the same frequency to evaluate how the system
scales and shifts the input to the output (D). This process is
repeated across all sinusoid pairs to produce a function that
describes how an input sinusoid is scaled (E) and shifted
(F) to an output sinusoid using only the measured data (A).

into output force sinusoids. The resulting transformation1

turns two complicated time-domain signals (Fig. 4A) into2

a clear relationship in the frequency-domain that describes3

how muscle transforms length changes into force changes: 1

a very slow (0Hz) length change will result in an output 2

force that is scaled by 4.5 and is in phase (Fig. 4E and F), 3

a 35 Hz sinusoidal length change will produce an output 4

force that is scaled by 4.9 and leads the input signal by 5

24◦ (Fig. 4E and F), and frequencies between 0 Hz and 35 6

Hz will be between these two signals in terms of scaling 7

and phase. These patterns of gain and phase can be used 8

to identify a network of spring-dampers that is equivalent 9

to the underlying linear system (the system in Fig. 4 A, 10

E, and F is a 4.46 N/mm spring in parallel with a 0.0089 11

Ns/mm damper). Since experimental measurements often 12

contain noise and small nonlinearities, the mathematical 13

procedure used to estimate H(s) and the corresponding 14

gain and phase profiles is more elaborate than we have 15

described (see Appendix D for details). 16

Kirsch et al. [5] used system identification methods to 17

identify LTI mechanical systems that best describes how 18

muscle transforms input length waveforms to output force 19

waveforms. The resulting LTI system, however, is only 20

accurate when the relationship between input and output is 21

approximately linear. Kirsch et al. [5] used the coherence 22

squared, (Cxy)
2, between the input and output to evaluate 23

the degree of linearity: Y (s) is a linear transformation of 24

X(s) at frequencies in which (Cxy)
2 is near one, while 25

Y (s) cannot be described as a linear function of X(s) at 26

frequencies in which (Cxy)
2 approaches zero. By calcu- 27

lating (Cxy)
2 between the length perturbation and force 28

waveforms, Kirsch et al. [5] identified the bandwidth in 29

which the muscle’s response is approximately linear. Kirsch 30

et al. [5] set the lower frequency of this band to 4 Hz, and 31

Fig. 3 of Kirsch et al. [5] suggests that this corresponds 32

to (Cxy)
2 ≥ 0.67 though the threshold for (Cxy)

2 is not 33

reported. The upper frequency of this band was set to the 34

cutoff frequency of the low-pass filter applied to the input 35

(15, 35, or 90 Hz). Within this bandwidth, Kirsch et al. [5] 36

compared the response of the specimen to several candi- 37

date models and found that a parallel spring-damper fit the 38

muscle’s frequency response best. Next, they evaluated the 39

stiffness and damping coefficients that best fit the muscle’s 40

frequency response [5]. Finally, Kirsch et al. evaluated how 41

much of the muscle’s time-domain response was captured 42

by the spring-damper of best fit by evaluating the variance- 43

accounted-for (VAF) between the two time-domain signals 44

V AF (fKD, fEXP ) =
σ2(fEXP)− σ2(fKD − fEXP )

σ2(fEXP )
.

(25)
Astonishingly, Kirsch et al. [5] found that a spring-damper 45

of best fit has a VAF of between 78-99%12 when compared 46

12Kirsch et al. [5] note on page 765 a VAF of 88-99% for the medial
gastrocnemius, and 8-10% lower for the soleus.
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Figure 5: The perturbation waveforms are constructed by
generating a series of pseudo-random numbers, padding the
ends with zeros, by filtering the signal using a 2nd order
low-pass filter (wave forms with -3dB cut-off frequencies of
90 Hz, 35 Hz and 15 Hz appear in A.) and finally by scaling
the range to the desired limit (1.6mm in A.). Although the
power spectrum of the resulting signals is highly variable,
the filter ensures that the frequencies beyond the -3dB point
have less than half their original power (B.).

to the experimentally measured forces fEXP . By repeating1

this experiment over a variety of stimulation levels (using2

both electrical stimulation and the crossed-extension reflex)3

Kirsch et al. [5] showed that these stiffness and damping4

coefficients vary linearly with the active force developed5

by the muscle. Further, Kirsch et al. [5] repeated the6

experiment using perturbations that had a variety of lengths7

(0.4 mm, 0.8mm, and 1.6mm) and bandwidths (15Hz, 35Hz,8

and 90Hz) and observed a peculiar quality of muscle: the9

damping coefficient of best fit increases as the bandwidth of10

the perturbation decreases (See Figures 3 and 10 of Kirsch11

et al. [5] for details). Here we simulate Kirsch et al.’s12

experiment [5] to determine, first, the VAF of the VEXAT13

model and the Hill model in comparison to a spring-damper14

of best fit; second, to compare the gain and phase response15

of the models to biological muscle; and finally, to see if16

the spring-damper coefficients of best fit for both models17

increase with active force in a manner that is similar to the18

cat soleus that Kirsch et al. studied [5].19

To simulate the experiments of Kirsch et al. [5] we begin20

by creating the 9 stochastic perturbation waveforms used in21

the experiment that vary in perturbation amplitude (0.4mm22

,0.8mm, and 1.6mm) and bandwidth (0-15 Hz, 0-35 Hz, and23

0-90 Hz)13. The waveform is created using a vector that is 1

composed of random numbers with a range of [−1, 1] that 2

begins and ends with a series of zero-valued padding points. 3

Next, a forward pass of a 2nd order Butterworth filter is 4

applied to the waveform and finally the signal is scaled to 5

the appropriate amplitude (Fig. 5). The muscle model is 6

then activated until it develops a constant tension at a length 7

of ℓMo . The musculotendon unit is then simulated as the 8

length is varied using the previously constructed waveforms 9

while activation is held constant. To see how impedance 10

varies with active force, we repeated these simulations at 11

ten evenly spaced tensions from 2.5N to 11.5N. Ninety 12

simulations are required to evaluate the nine different per- 13

turbation waveforms at each of the ten tension levels. The 14

time-domain length perturbations and force responses of 15

the modeled muscles are used to evaluate the coherence 16

squared of the signal, gain response, and phase responses 17

of the models in the frequency-domain. Since the response 18

of the models might be more nonlinear than biological mus- 19

cle, we select a bandwidth that meets (Cxy)
2 > 0.67 but 20

otherwise follows the bandwidths analyzed by Kirsch et al. 21

[5] (see Appendix D for details). 22

When coupled with an elastic-tendon, the 15 Hz per- 23

turbations show that neither model can match the VAF of 24

Kirsch et al.’s analysis [5] (compare Fig. 6A to G), while at 25

90Hz the VEXAT model reaches a VAF of 89% (Fig. 6D) 26

which is within the range of 78-99% reported by Kirsch 27

et al. [5]. In contrast, the Hill model’s VAF at 90 Hz re- 28

mains low at 58% (Fig. 6J). While the VEXAT model has a 29

gain profile in the frequency-domain that closer to Kirsch 30

et al.’s data [5] than the Hill model (compare Fig. 6B to H 31

and E to K), both models have a greater phase shift than 32

Kirsch et al.’s data [5] at low frequencies (compare Fig. 33

6C to I and F to L). The phase response of the VEXAT 34

model to the 90 Hz perturbation (Fig. 6F) shows the conse- 35

quences of Eqn. 16: at low frequencies the phase response 36

of the VEXAT model is similar to that of the Hill model, 37

while at higher frequencies the model’s response becomes 38

similar to a spring-damper. This frequency dependent re- 39

sponse is a consequence of the first term in Eqn. 16: the 40

value of τ S causes the response of the model to be similar 41

to a Hill model at lower frequencies and mimic a spring- 42

damper at higher frequencies. Both models show the same 43

perturbation-dependent phase-response, as the damping co- 44

efficient of best fit increases as the perturbation bandwidth 45

decreases: compare the damping coefficient of best fit for 46

the 15Hz and 90Hz profiles for the VEXAT model (listed 47

on Fig. 6A. and D.) and the Hill model (listed on Fig. 6G. 48

and J., respectively). 49

13For brevity we will refer to the -3 dB frequency of the perturbation
waveform rather than the entire bandwidth
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Figure 6: The 15 Hz perturbations show that the VEXAT model’s performance is mixed: in the time-domain (A.) the
VAF is lower than the 78-99% analyzed by Kirsch et al. [5]; the gain response (B.) follows the profile in Figure 3 of
Kirsch et al. [5], while the phase response differs (C.). The response of the VEXAT model to the 90 Hz perturbations is
much better: a VAF of 91% is reached in the time-domain (D.), the gain response follows the response of the cat soleus
analyzed by Kirsch et al. [5], while the phase-response follows biological muscle closely for frequencies higher than
30 Hz. Although the Hill’s time-domain response to the 15 Hz signal has a higher VAF than the VEXAT model (G.),
the RMSE of the Hill model’s gain response (H.) and phase response (I.) shows it to be more in error than the VEXAT
model. While the VEXAT model’s response improved in response to the 90 Hz perturbation, the Hill model’s response
does not: the VAF of the time-domain response remains low (J.), neither the gain (K.) nor phase responses (L.) follow the
data of Kirsch et al. [5]. Note that the Hill model’s 90 Hz response was so nonlinear that the lowest frequency analyzed
had to be raised from 4 Hz to 7 Hz to satisfy the criteria that (Cxy)

2 ≥ 0.67.

The closeness of each model’s response to the spring-1

damper of best fit changes when a rigid-tendon is used2

instead of an elastic-tendon. While the VEXAT model’s3

response to the 15 Hz and 90 Hz perturbations improves4

slightly (compare Fig. 6A-F to Fig. 16A-F in Appendix5

F), the response of the Hill model to the 15 Hz perturba-6

tion changes dramatically with the time-domain VAF rising7

from 55% to 85% (compare Fig. 6G-L to Fig. 16G-L in8

Appendix F). Although the Hill model’s VAF in response9

to the 15 Hz perturbation improved, the frequency response10

contains mixed results: the rigid-tendon Hill model’s gain11

response is better (Fig. 16H in Appendix F), while the12

phase response is worse in comparison to the elastic-tendon13

Hill model. While the rigid-tendon Hill model produces a14

better time-domain response to the 15 Hz perturbation than15

the elastic-tendon Hill model, this improvement has been16

made with a larger phase shift between force and length 1

than biological muscle [5]. 2

The gain and phase profiles of both models deviate from 3

the spring-damper of best fit due to the presence of nonlin- 4

earities, even for small perturbations. Some of the VEXAT 5

model’s nonlinearities in this experiment come from the 6

tendon model (compare Fig. 6A-F to Fig. 16A-F in Ap- 7

pendix F), since the response of the VEXAT model with a 8

rigid-tendon stays closer to the spring-damper of best fit. 9

The Hill model’s nonlinearities originate from the underly- 10

ing expressions for stiffness and damping of the Hill model, 11

which are particularly nonlinear with a rigid-tendon model 12

(Fig. 16G-L in Appendix F) The stiffness of a Hill model’s 13

CE 14

kM = fM
o

(
a
df L

dℓM
fV +

df PE

dℓM

)
(26)

14



Negative stiffness!

-0.08 N/mm

Figure 7: When coupled with an elastic-tendon, the stiffness (A.) and damping (B.) coefficients of best fit of both the
VEXAT model and a Hill model increase with the tension developed by the MTU. However, both the stiffness and
damping of the elastic-tendon Hill model are larger than Kirsch et al.’s coefficients (from Figure 12 of [5]), particularly at
higher tensions. When coupled with rigid-tendon the stiffness (C.) and damping (D.) coefficients of the VEXAT model
remain similar, as the values for kX

o and βX
o have been calculated to take the tendon model into account (see Appendix

B.4 for details). In contrast, the stiffness and damping coefficients of the rigid-tendon Hill model differ dramatically from
the elastic-tendon Hill model: while the elastic-tendon Hill model is too stiff and damped, the rigid-tendon Hill model is
not stiff enough (compare A. to C.) and far too damped (compare B. to D.). Coupling the Hill model with a rigid-tendon
increases the VAF from 30-51% to 86% but this improved accuracy is made using stiffness and damping that deviates
from that of biological muscle [5].

is heavily influenced by the partial derivative of df L

dℓM
which1

has a region of negative stiffness. Although df PE

dℓM
is well2

approximated as being linear for small length changes, df L

dℓM
3

changes sign across ℓMo . The damping of a Hill model’s CE 1

βM = fM
o

(
a f L

dfV

dvM

)
(27)
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also suffers from high degrees of nonlinearity for small per-1

turbations about vM = 0 since the slope of dfV

dvM is positive2

and large when shortening, and positive and small when3

lengthening (Fig. 2B). While Eqns. 26 and 27 are mathe-4

matically correct, the negative stiffness and wide ranging5

damping values predicted by these equations do not match6

experimental data [5]. In contrast, the stiffness7

kM = af L(ℓ̃S + L̃M)

(
1

2
k̃X
o

)
+
df 2(ℓ̃ 2)

dℓ2
1

2
+

df ECM(ℓ̃ ECM)

dℓECM

1

2
(28)

and damping8

β̃M = af L(ℓ̃S + L̃M)

(
β̃X
o

dṽX

dṽM

)
+ β̃ ϵ (29)

of the VEXAT’s CE do not change so drastically because9

these terms do not depend on the slope of the force-length10

relation, or the force-velocity relation (see Appendix B.411

for derivation).12

By repeating the stochastic perturbation experiments13

across a range of isometric forces, Kirsch et al. [5] were14

able to show that the stiffness and damping of a muscle15

varies linearly with the active tension it develops (see Fig-16

ure 12 of [5]). We have repeated our simulations of Kirsch17

et al.’s [5] experiments at ten nominal forces (spaced evenly18

between 2.5N and 11.5 N) and compared how the VEXAT19

model and the Hill model’s stiffness and damping coeffi-20

cients compare to Figure 12 of Kirsch et al. [5] (Fig. 7). The21

stiffness and damping profile of the VEXAT model deviates22

a little from Kirsch et al.’s data [5] because XE’s dynamics23

at 35 Hz are still influenced by the Hill model embedded24

in Eqn. 16 (see Appendix B.4). Despite this, the VEXAT25

model develops similar stiffness and damping profile with26

either a viscoelastic-tendon (Fig. 7A & B) or a rigid-tendon27

(Fig. 7C & D). In contrast, when the Hill model is coupled28

with an elastic-tendon both its stiffness and damping are29

larger than Kirsch et al.’s data [5] at the higher tensions (Fig.30

7A and B). This pattern changes when simulating a Hill31

model with a rigid-tendon: the model’s stiffness is slightly32

negative (Fig. 7C), while the model’s final damping coef-33

ficient is nearly three times the value measured by Kirsch34

et al. (Fig. 7D). Though a negative stiffness may seem35

surprising, Eqn. 26 shows a negative stiffness is possible36

at the nominal CE length of these simulations: just past37

ℓMo the slope of the active force-length curve is negative38

and the slope of the passive force-length curve is negligible.39

The tendon model also affects the VAF of the Hill model40

to a large degree: the elastic-tendon Hill model has a low41

VAF 30-51% (Fig. 7A & B) while the rigid-tendon Hill42

model has a much higher VAF of 86%. Although the VAF 1

of the rigid-tendon Hill model is acceptable, these forces 2

are being generated in a completely different manner than 3

those obtained from biological muscle, as Kirsch et al.’s 4

data [5] indicate (Fig. 7C and D). 5

When the VAF of the VEXAT and Hill model is evalu- 6

ated across a range of nominal tensions (ten values from 7

2.5 to 11.5N), frequencies (15 Hz, 35 Hz, and 90 Hz), am- 8

plitudes (0.4mm, 0.8mm, and 1.6mm), and tendon types 9

(rigid and elastic) two things are clear: first, that the VEXAT 10

model’s 64-100% VAF is close to the 78-99% VAF reported 11

by Kirsch et al. [5] while the Hill model’s 28-95% VAF 12

differs (Fig. 8); and second, that there are systematic vari- 13

ations in VAF, stiffness, and damping across the different 14

perturbation magnitudes and frequencies (see Tables 5 and 15

5 in Appendix E). Both models produce worse VAF values 16

when coupled with an elastic-tendon (Fig. 8A, B, and C), 17

though the Hill model is affected most: the mean VAF of 18

the elastic-tendon Hill model is 67% lower than the mean 19

VAF of the rigid-tendon model for the 0.4 mm 15 Hz pertur- 20

bations (Fig. 8A). While the VEXAT model’s lowest VAF 21

occurs in response to the low frequency perturbations (Fig. 22

8A) with both rigid and elastic-tendons, the Hill model’s 23

lowest VAF varies with both tendon type and frequency: 24

the rigid-tendon Hill model has its lowest VAF in response 25

to the 1.6 mm 90 Hz perturbations (Fig. 8C) while the 26

elastic-tendon Hill model has its lowest VAF in response to 27

the 0.4 mm 15 Hz perturbations (Fig. 8A). It is unclear if 28

biological muscle displays systematic shifts in VAF since 29

Kirsch et al. [5] did not report the VAF of each trial. 30

3.2 Active lengthening on the descending limb 31

We now turn our attention to the active lengthening in- 32

situ experiments of Herzog and Leonard [7]. During these 33

experiments cat soleus muscles were actively lengthened 34

by modest amounts (7-21% ℓMo ) starting on the descending 35

limb of the active-force-length curve (ℓM/ℓMo > 1 in Fig. 36

2A). This starting point was chosen specifically because 37

the stiffness of a Hill model may actually change sign and 38

become negative because of the influence of the active- 39

force-length curve on kM as shown in Eqn. 26 as ℓM 40

extends beyond ℓMo . Herzog and Leonard’s [7] experiment 41

is important for showing that biological muscle does not 42

exhibit negative stiffness on the descending limb of the 43

active-force-length curve. In addition, this experiment also 44

highlights the slow recovery of the muscle’s force after 45

stretching has ceased, and the phenomena of passive force 46

enhancement after stimulation is removed. Here we will 47

examine the 9 mm/s ramp experiment in detail because the 48

simulations of the 3 mm/s and 27 mm/s ramp experiments 49

produces similar stereotypical patterns (see Appendix G for 50
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Figure 8: Kirsch et al. [5] noted that the VAF of the spring-damper model of best fit captured between 78-99% across
all experiments. We have repeated the perturbation experiments to evaluate the VAF across a range of conditions: two
different tendon models, three perturbation bandwidths (15 Hz, 35 Hz, and 90 Hz), three perturbation magnitudes (0.4
mm, 0.8 mm and 1.6 mm), and ten nominal force values (spaced evenly between 2.5N and 11.5N). Each bar in the plot
shows the mean VAF across all ten nominal force values, with the whiskers extending to the minimum and maximum
value that occurred in each set. The mean VAF of the VEXAT model changes by up to 36% depending on the condition,
with the lowest mean VAF occurring in response to the 1.6 mm 15 Hz perturbation with an elastic-tendon (A.), and the
highest mean VAF occurring in response to the 90 Hz perturbations with the rigid-tendon (C.). In contrast, the mean VAF
of the Hill model varies by up to 67% depending on the condition, with the lowest VAF occurring in the 15 Hz 0.4 mm
trial with the elastic-tendon (A.), and the highest value VAF occurring in the 15 Hz 0.4 mm trial with the rigid-tendon
(A.).

details).1

When Herzog and Leonard’s [7] active ramp-lengthening2

(Fig. 9A) experiment is simulated, both models produce3

a force transient initially (Fig. 9B), but for different rea-4

sons. The VEXAT model’s transient is created when the5

lumped crossbridge spring (the k̃X
o ℓ̃X term in Eqn. 15)6

is stretched. In contrast, the Hill model’s transient is pro-7

duced, not by spring forces, but by damping produced by8

the force-velocity curve as shown in Eqn. 26.9

After the initial force transient, the response of the two10

models diverges (Fig. 9B): the VEXAT model continues11

to develop increased tension as it is lengthened, while the12

Hill model’s tension drops before recovering. The VEXAT13

model’s continued increase in force is due to the titin model:14

when activated, a section of titin’s PEVK region remains15

approximately fixed to the actin element (Fig. 1C). As a16

result, the ℓ2 element (composed of part of PEVK segment17

and the distal Ig segment) continues to stretch and gener-18

ates higher forces than it would if the muscle were being19

passively stretched. While both the elastic and rigid-tendon20

versions of the VEXAT model produce the same stereotypi-21

cal ramp-lengthening response (Fig. 9B), the rigid-tendon22

model develops slightly more tension because the strain of23

the MTU is solely borne by the CE.24

In contrast, the Hill model develops less force during25

lengthening when it enters a small region of negative stiff-26

ness (Fig. 9B and C) because the passive-force-length curve 1

is too compliant to compensate for the negative slope of the 2

active force-length curve. Similarly, the damping coefficient 3

of the Hill model drops substantially during lengthening 4

(Fig. 9D). Equation 27 and Figure 2B shows the reason that 5

damping drops during lengthening: d fV/dvM, the slope 6

of the line in Fig. 2B, is quite large when the muscle is iso- 7

metric and becomes quite small as the rate of lengthening 8

increases. 9

After the ramp stretch is completed (at time 3.4 sec- 10

onds in Fig. 9B), the tension developed by the cat soleus 11

recovers slowly, following a profile that looks strikingly 12

like a first-order decay. The large damping coefficient 13

acting between the titin-actin bond slows the force recov- 14

ery of the VEXAT model. We have tuned the value of 15

βPEVK
A to 71.9fM

o /(ℓMo /s) for the elastic-tendon model, 16

and 77.7fM
o /(ℓMo /s) for the rigid-tendon model, to match 17

the rate of force decay of the cat soleus in Herzog and 18

Leonard’s data [7]. The Hill model, in contrast, recovers 19

to its isometric value quite rapidly. Since the Hill model’s 20

force enhancement during lengthening is a function of the 21

rate of lengthening, when the lengthening ceases, so too 22

does the force enhancement. 23

Once activation is allowed to return to zero, Herzog and 24

Leonard’s data shows that the cat soleus continues to de- 25

velop a tension that is ∆fB above passive levels (Fig. 9B 26
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Figure 9: Herzog and Leonard [7] actively lengthened (A.)
cat soleus muscles on the descending limb of the force-
length curve (where ℓ̃ M > 1 in Fig. 2A) and measured the
force response of the MTU (B.). After the initial transient
at 2.4s the Hill model’s output force drops (B.) because of
the small region of negative stiffness (C.) created by the
force-length curve. In contrast, the VEXAT model develops
steadily increasing forces between 2.4 − 3.4s and has a
consistent level of stiffness (C.) and damping (D.).

for t > 8.5s). The force ∆fB is known as passive force 1

enhancement, and is suspected to be caused by titin bind- 2

ing to actin [80]. Since we model titin-actin forces using 3

an activation-dependent damper, when activation goes to 4

zero our titin model becomes unbound from actin. As such, 5

both our model and a Hill model remain ∆fB below the 6

experimental data of Herzog and Leonard (Fig. 9B) after 7

lengthening and activation have ceased. 8

3.3 Active lengthening beyond actin-myosin over- 9

lap 10

One of the great challenges that remains is to decompose 11

how much tension is developed by titin (Fig. 1C) separately 12

from myosin (Fig. 1B) in an active sarcomere. Leonard 13

et al.’s [8] active-lengthening experiment provides some 14

insight into this force distribution problem because they 15

recorded active forces both within and far beyond actin- 16

myosin overlap. Leonard et al.’s [8] data shows that active 17

force continues to develop linearly during lengthening, be- 18

yond actin-myosin overlap, until mechanical failure. When 19

activated and lengthened, the myofibrils failed at a length of 20

3.38ℓMo and force of 5.14fM
o , on average. In contrast, dur- 21

ing passive lengthening myofibrils failed at a much shorter 22

length of 2.86ℓMo with a dramatically lower tension of of 23

1.31fM
o . To show that the extraordinary forces beyond 24

actin-myosin overlap can be ascribed to titin, Leonard et al. 25

[8] repeated the experiment but deleted titin using trypsin: 26

the titin-deleted myofibrils failed at short lengths and in- 27

significant stresses. Using the titin model of Eqn. 20 (Fig. 28

1A) as an interpretive lens, the huge forces developed dur- 29

ing active lengthening would be created when titin is bound 30

to actin leaving the distal segment of titin to take up all of 31

the strain. Conversely, our titin model would produce lower 32

forces during passive lengthening because the proximal 33

Ig, PEVK, and distal Ig regions would all be lengthening 34

together (Fig. 3A). 35

Since Leonard et al.’s experiment [8] was performed on 36

skinned rabbit myofibrils and not on whole muscle, both 37

the VEXAT and Hill models had to be adjusted prior to 38

simulation (see Appendix H for parameter values). To 39

simulate a rabbit myofibril we created a force-length curve 40

[76] consistent with the filament lengths of rabbit skeletal 41

muscle [61] (1.12µm actin, 1.63µm myosin, and 0.07µm 42

z-line width) and fit the force-length relations of the two 43

titin segments to be consistent with the structure measured 44

by Prado et al. [59] of rabbit psoas titin consisting of a 45

70%-30% mix of a 3300kD and a 3400kD titin isoform 46

(see Appendix B.3 for fitting details and Appendix H for 47

parameter values). Since this is a simulation of a fibril, we 48

used a rigid-tendon of zero length (equivalent to ignoring 49

the tendon), and set the pennation angle to zero. 50
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Figure 10: In the VEXAT model we consider two different
versions of the force-length relation for each titin segment
(A): a linear extrapolation, and a WLC model extrapola-
tion. Leonard et al. [8] observed that active myofibrils
continue to develop increasing amounts of tension beyond
actin-myosin overlap (B, grey lines with ±1 standard de-
viation shown). When this experiment is replicated using
the VEXAT model (B., blue & magenta lines) and a Hill
model (C. red lines), only the VEXAT model with the linear
extrapolated titin model is able to replicate the experiment
with the titin-actin bond slipping off of the actin filament at
3.38ℓMo .

As mentioned in Sec. 2, because this experiment includes 1

extreme lengths, we consider two different force-length 2

relations for each segment of titin (Fig. 10A): a linear 3

extrapolation, and an extension that follows the WLC model. 4

While both versions of the titin model are identical up to 5

ℓ̃PEtoe , beyond ℓ̃PEtoe the WLC model continues to develop 6

increasingly large forces until all of the Ig domains and 7

PEVK residues have been unfolded and the segments of titin 8

reach a physical singularity: at this point the Ig domains 9

and PEVK residues cannot be elongated any further without 10

breaking molecular bonds (see Appendix B.3 for details). 11

Our preliminary simulations indicated that the linear titin 12

model’s titin-actin bond was not strong enough to support 13

large tensions, and so we increased the value of βPEVK
A 14

from 71.9 to 975 (compare Tables 1 and 6 section H). 15

The Hill model was similarly modified, with the penna- 16

tion angle set to zero and coupled with a rigid-tendon of 17

zero length. Since the Hill model lacks an ECM element 18

the passive-force-length curve was instead fitted to match 19

the passive forces produced in Leonard et al.’s data [8]. No 20

adjustments were made to the active elements of the Hill 21

model. 22

When the slow active stretch (0.1µm/sarcomere/s) of 23

Leonard et al.’s experiment is simulated [8] only the 24

VEXAT model with the linear titin element can match the 25

experimental data of Leonard et al. [8] (Fig. 10B). The Hill 26

model cannot produce active force for lengths greater than 27

1.62ℓMo since the active force-length curve goes to zero (Fig. 28

2A) and the model lacks any element capable of producing 29

force beyond this length. In contrast, the linear titin model 30

continues to develop active force until a length of 3.38ℓMo 31

is reached, at which point the titin-actin bond is pulled off 32

the end of the actin filament and the active force is reduced 33

to its passive value. 34

The WLC titin model is not able to reach the extreme 35

lengths observed by Leonard et al. [8]. The distal segment 36

of the WLC titin model approaches its contour length early 37

in the simulation and ensures that the the titin-actin bond 38

is dragged off the end of the actin filament at 1.99 ℓMo 39

(Fig. 10B). After 1.99ℓMo (Fig. 10B), the tension of the 40

WLC titin model drops to its passive value but continues 41

to increase until the contour lengths of all of the segments 42

of titin are reached at 2.32 ℓMo . Comparing the response 43

of the linear model to the WLC titin model two things are 44

clear: the linear titin model more faithfully follows the data 45

of Leonard et al. [8], but does so with titin segment lengths 46

that exceed the maximum contour length expected for the 47

isoform of titin in a rabbit myofibril. 48

This simulation has also uncovered a surprising fact: the 49

myofibrils in Leonard et al.’s [8] experiments do not fail 50

at 2.32 ℓMo , as would be expected by the WLC model of 51
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titin, but instead reach much greater lengths (Fig. 2B).1

Physically, it may be possible for a rabbit myofibril to reach2

these lengths (without exceeding the contour lengths of the3

proximal Ig, PEVK, and distal Ig segments) if the bond4

between the distal segment of titin and myosin breaks down.5

This would allow the large Ig segment, that is normally6

bound to myosin, to uncoil and continue to develop the7

forces observed by Leonard et al. [8]. Unfortunately the8

mechanism which allowed the samples in Leonard et al.’s9

experiments to develop tension beyond titin’s contour length10

remains unknown.11

3.4 Force-length and force-velocity12

Although the active portion of the Hill model is embedded13

in Eqn. 16, it is not clear if the VEXAT model can still14

replicate Hill’s force-velocity experiments [9] and Gordon15

et al.’s [10] force-length experiments. Here we simulate16

both of these experiments using the cat soleus model that17

we have used for the simulations described in Sec. 3.1 and18

compare the results to the force-length and force-velocity19

curves that are used in the Hill model and in Eqn. 16 of the20

VEXAT model.21

Hill’s force-velocity experiment [9] is simulated by acti-22

vating the model, and then by changing its length to follow23

a shortening ramp and a lengthening ramp. During short-24

ening experiments, the CE shortens from 1.1ℓMo to 0.9ℓMo25

with the measurement of active muscle force is made at ℓMo .26

Lengthening experiments are similarly made by measuring27

muscle force mid-way through a ramp stretch that begins at28

0.9ℓMo and ends at 1.1ℓMo . When an elastic-tendon model is29

used, we carefully evaluate initial and terminal path lengths30

to accommodate for the stretch of the tendon so that the31

CE still shortens from 1.1ℓMo to 0.9ℓMo and lengthens from32

0.9ℓMo to 1.1ℓMo .33

The VEXAT model produces forces that differ slightly34

from the fV that is embedded in Eqn. 16 while the Hill35

model reproduces the curve (Fig. 11). The maximum short-36

ening velocity of the VEXAT model is slightly weaker than37

the embedded curve due to the series viscoelasticity of the38

XE element. Although the model can be made to converge39

to the fV curve more rapidly by decreasing τ S this has the40

undesirable consequence of degrading the low-frequency41

response of the model during Kirsch et al.’s experiments [5]42

(particularly Fig. 6C., and F.). These small differences can43

be effectively removed by scaling vM
max by sV (Fig. 11A44

has sV = 0.95) to accommodate for the small decrease in45

force caused by the viscoelastic XE element.46

Gordon et al.’s [10] force-length experiments were sim-47

ulated by first passively lengthening the CE, and next by48

measuring the active force developed by the CE at a series49

of fixed lengths. Prior to activation, the passive CE was50

Figure 11: When Hill’s [9] force-velocity experiment is
simulated (A.), the VEXAT model produces a force-velocity
profile (blue dots) that approaches zero more rapidly during
shortening than the embedded profile fV(·) (red lines). By
scaling vM

max by 0.95 the VEXAT model (magenta squares)
is able to closely follow the force-velocity curve of the Hill
model. While the force-velocity curves between the two
models are similar, the time-domain force response of the
two models differs substantially (B.). The rigid-tendon Hill
model exhibits a sharp nonlinear change in force at the
beginning (0.1s) and ending (0.21s) of the ramp stretch.

simulated for a brief period of time in a passive state to 1

reduce any history effects due to the active titin element. 2
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Figure 12: When Gordon et al.’s [10] passive and active
force-length experiments are simulated, the VEXAT model
(blue dots) and the Hill model (red lines) produce slightly
different force-length curves (A.) and force responses in
the time-domain (B.). The VEXAT model produces a right
shifted active force-length curve, when compared to the Hill
model due to the series elasticity of the XE element. By
shifting the underlying curve by 2

kX
o

to the left the VEXAT
model (magenta squares) can be made to exactly match the
force-length characteristic of the Hill model.

To be consistent with Gordon et al.’s [10] experiment, we1

subtracted off the passive force from the active force before2

producing the active-force-length profile.3

The simulation of Gordon et al.’s [10] experiment shows4

that the VEXAT model (Fig. 12A, blue dots) produces a 1

force-length profile that is shifted to the right of the Hill 2

model (Fig. 12A, red line) due to the series elasticity in- 3

troduced by the XE. We can solve for the size of this right- 4

wards shift by noting that Eqn. 16 will drive the ℓ̃S to a 5

length such that the isometric force developed by the XE is 6

equal to that of the embedded Hill model 7

af L(ℓ̃S + L̃M)k̃X
o ℓ̃X = af L(ℓ̃S + L̃M) (30)

allowing us to solve for 8

ℓ̃X =
1

k̃X
o

(31)

the isometric strain of the XE. Since there are two viscoelas- 9

tic XE elements per CE, the VEXAT model has an active 10

force-length characteristic that shifted to the right of the 11

embedded f L curve by a constant 2
k̃X
o

. This shift, ∆L, can 12

be calibrated out of the model (Fig. 12 upper plot, magenta 13

squares) by adjusting the f L(·) curve so that it is 2
k̃X
o

to 14

the left of its normal position. Note that all simulations 15

described in the previous sections made use of the VEXAT 16

model with the calibrated force-length relation and the cali- 17

brated force-velocity relation. 18

4 Discussion 19

A muscle model is defined by the experiments it can repli- 20

cate and the mechanisms it embodies. We have developed 21

the VEXAT muscle model to replicate the force response of 22

muscle to a wide variety of perturbations [5], [7], [8] while 23

also retaining the ability to reproduce Hill’s force-velocity 24

[9] experiment and Gordon et al.’s [10] force-length experi- 25

ments. The model we have developed uses two mechanisms 26

to capture the force response of muscle over a large variety 27

of time and length scales: first, a viscoelastic crossbridge 28

element that over brief time-scales appears as a spring- 29

damper, and at longer time-scales mimics a Hill-model; 30

second, a titin element that is capable of developing active 31

force during large stretches. 32

The viscoelastic crossbridge and titin elements we 33

have developed introduce a number of assumptions into 34

the model. While there is evidence that the activation- 35

dependent stiffness of muscle originates primarily from the 36

stiffness of the attached crossbridges [63], the origins of 37

the activation-dependent damping observed by Kirsch et al. 38

[5] have not yet been established. We assumed that, since 39

the damping observed by Kirsch et al. [5] varies linearly 40

with activation, the damping originates from the attached 41

crossbridges. Whether this damping is intrinsic or is due 42

to some other factor remains to be established. Next, we 43
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have also assumed that the force developed by the XE con-1

verges to a Hill model [17] given enough time (Eqn. 16). A2

recent experiment of Tomalka et al. [81] suggests the force3

developed by the XE might decrease during lengthening4

rather than increasing as is typical of a Hill model [17]. If5

Tomalka et al.’s [81] observations can be replicated, the6

VEXAT model will need to be adjusted so that the the XE7

element develops less force during active lengthening while8

the active-titin element develops more force. Finally, we9

have assumed that actin-myosin sliding acceleration (due10

to crossbridge cycling) occurs when there is a force imbal-11

ance between the external force applied to the XE and the12

internal force developed by the XE as shown in Eqn. 16.13

This assumption is a departure from previous models: Hill-14

type models [16], [17] assume that the tension applied to15

the muscle instantaneously affects the actin-myosin sliding16

velocity; Huxley models [11] assume that the actin-myosin17

sliding velocity directly affects the rate of attachment and18

detachment of crossbridges.19

The active titin model that we have developed makes20

assumptions similar to Rode et al. [40] and Schappacher-21

Tilp et al. [42]: some parts of the PEVK segment bond to22

actin, and this bond cannot do any positive work on titin.23

The assumption that the bond between titin and actin can-24

not do positive work means that titin cannot be actively25

preloaded: it can only develop force when it is stretched. In26

contrast, two mechanisms have been proposed that make27

it possible for titin to be preloaded by crossbridge cycling:28

Nishikawa’s [41] winding filament theory and DuVall et29

al.’s [46] titin entanglement hypothesis. If titin were signifi-30

cantly preloaded by crossbridge cycling, the titin load path31

would support higher forces and the myosin-actin load path32

would bear less force. Accordingly, the overall stiffness33

of the CE would be reduced, affecting our simulations of34

Kirsch et al. [5]: lower myosin-actin loads mean fewer35

attached crossbridges, since crossbridges are stiff in com-36

parison to titin, the stiffness of the CE would decrease (see37

Appendix A). Hopefully experimental work will clarify if38

titin can be actively preloaded by crossbridges in the future.39

Both the viscoelastic crossbridge and active titin elements40

include simple myosin-actin and titin-actin bond models41

that improve accuracy but have limitations. First, the vis-42

coelastic crossbridge element has been made to represent43

a population of crossbridges in which the contribution of44

any single crossbridge is negligible. Though it may be pos-45

sible for the XE model to accurately simulate a maximally46

activated single sarcomere (which has roughly 20 attached47

crossbridges per half sarcomere [12], [82]) the accuracy48

of the model will degrade as the number of attached cross-49

bridges decreases. When only a single crossbridge remains,50

the XE model’s output will be inaccurate because it can51

only generate force continuously while a real crossbridge 1

generates force discretely each time it attaches to, and de- 2

taches from, actin. Next, we have used two equations, Eqns. 3

16 and 21, that assume myosin-actin and titin-actin interac- 4

tions are temperature-invariant and scale linearly with size 5

(ℓMo and fM
o ). In contrast, myosin-actin interactions and 6

some titin-actin interactions are temperature-sensitive [83], 7

[84] and may not scale linearly with size. In Sec. 3.3 we 8

had to adjust the active titin damping parameter, βPEVK
A , 9

to simulate myofibril experiments [8], perhaps because the 10

assumptions of temperature-invariance and size-linearity 11

were not met: the initial value for βPEVK
A came from fit- 12

ting to in-situ experimental data [7] from whole muscle 13

that was warmer (35− 36.5◦C vs 20− 21◦C) and larger 14

(ℓMo of 42.9mm vs. 10 − 15 µm) than the myofibrils [8]. 15

While the cat soleus XE and titin model parameters (Table 16

1 G, H, and I) can be used as rough default values, these 17

parameters should be refit to accurately simulate muscle 18

that differs in scale or temperature from cat soleus. Finally, 19

the VEXAT model in its current form ignores phenomena 20

related to submaximal contractions: the shift in the peak of 21

the force-length relation [85], and the scaling of the max- 22

imum shortening velocity [86]. We hope to include these 23

phenomena in a later version of the VEXAT model to more 24

accurately simulate submaximal contractions. 25

The model we have proposed can replicate phenomena 26

that occur at a wide variety of time and length scales: Kirsch 27

et al.’s experiments [5] which occur over small time and 28

length scales; and the active lengthening experiments of 29

Herzog and Leonard [7] and Leonard et al. [8] which occur 30

over physiological and supra-physiological length scales. In 31

contrast, we have shown in Sec. 3.1 to 3.3 that a Hill-type 32

model compares poorly to biological muscle when the same 33

set of experiments are simulated. We expect that a Hux- 34

ley model [11] is also likely to have difficulty reproducing 35

Kirsch et al.’s experiment [5] because the model lacks an ac- 36

tive damping element. Since titin was discovered [25] long 37

after Huxley’s model was proposed [11], a Huxley model 38

will be unable to replicate any experiment that is strongly 39

influenced by titin such as Leonard et al.’s experiment [8]. 40

Although there have been several more recent muscle 41

model formulations proposed, none have the properties to 42

simultaneously reproduce the experiments of Kirsch et al. 43

[5], Herzog and Leonard [7], Leonard et al. [8], Hill [9], 44

and Gordon et al. [10]. Linearized impedance models [14], 45

[15] can reproduce Kirsch et al.’s experiments [5], but these 46

models lack the nonlinear components needed to reproduce 47

Gordon et al.’s force-length curve [10] and Hill’s force- 48

velocity curve [9]. The models of Forcinito et al. [18], and 49

Tahir et al. [43] have a structure that places a contractile 50

element in series with an elastic-tendon. While this is a 51
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commonly used structure, at high frequencies the lack of1

damping in the tendon will drive the phase shift between2

length and force to approach zero. The measurements and3

model of Kirsch et al. [5], in contrast, indicate that the4

phase shift between length and force approaches ninety de-5

grees with increasing frequencies. Though the Hill-type6

models of Haeufle et al. [23] and Günther et al. [24] have7

viscoelastic tendons, these models have no representation of8

the viscoelasticity of the CE’s attached crossbridges. Sim-9

ilar to the Hill-type muscle model evaluated in this work10

[17], it is likely that models of Haeufle et al. [23] and11

Günther et al. [24] will not be able to match the frequency12

response of biological muscle. While Tamura et al.’s model13

[20] is one of the few that develop force-enhancement and14

force-depression [21], it is unlikely that this model will be15

able to reproduce the frequency response of biological mus-16

cle [5] because it uses spring-damping elements in series:17

Kirsch et al. [5] showed that the frequency-response of a18

spring-damper in series poorly fits biological muscle. De19

Groote et al. [52], [53] introduced a short-range-stiffness20

element in parallel to a Hill model to capture the stiffness21

of biological muscle. While De Groote et al.’s [52], [53]22

formulation improves upon a Hill model it is unlikely to23

reproduce Kirsch et al.’s experiment [5] because we have24

shown in Sec. 3.1 that a Hill model has a frequency re-25

sponse that differs from biological muscle. Rode et al.’s26

[40] muscle model also uses a Hill model for the CE and27

so we expect that this model will have the same difficulties28

reproducing Kirsch et al.’s [5] experiment. Schappacher-29

Tilp et al.’s model [42] extends a Huxley model [11] by30

adding a detailed titin element. Similar to a Huxley model,31

Schappacher-Tilp et al.’s model [42] will likely have diffi-32

culty reproducing Kirsch et al.’s experiment [5] because it33

is missing an active damping element.34

While developing this model, we have come across open35

questions that we hope can be addressed in the future. How36

do muscle stiffness and damping change across the force-37

length curve? Does stiffness and damping change with38

velocity? What are the physical origins of the active damp-39

ing observed by Kirsch et al. [5]? What are the conditions40

that affect passive-force enhancement, and its release? In41

addition to pursuing these questions, we hope that other42

researchers continue to contribute experiments that are43

amenable to simulation, and to develop musculotendon44

models that overcome the limitations of our model. To help45

others build upon our work, we have made the source code46

of the model and all simulations presented in this paper47

available online14.48

14See the elife2023 branch of https://github.com/
mjhmilla/Millard2021ImpedanceMuscle
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Figure 13: To evaluate the stiffness of the actin-myosin load
path, we first determine the average point of attachment.
Since the actin filament length varies across species we
label it LA. Across rabbits, cats and human skeletal muscle
myosin geometry is consistent [76]: a half-myosin is 0.8µm
in length with a 0.1µm bare patch in the middle. Thus at full
overlap the average point of attachment is 0.45µm from the
M-line, or LA−0.45µm from the Z-line at ℓMo . The lumped
stiffness of the actin-myosin load path of a half-sarcomere is
the stiffness of three springs in series: a spring representing
a LA−0.45µm length of actin, a spring representing the all
attached crossbridges, and a spring representing a 0.45µm
section of myosin.

A The stiffness of the actin-myosin and 44

titin load paths 45

A single half-myosin can connect to the surrounding six 46

actin filaments through 97.9 crossbridges. A 0.800 µm half- 47

myosin has a pair crossbridges over 0.700µm of its length 48

every 14.3nm which amounts to 97.9 per half-myosin [87]. 49

Although 97.9 crossbridges does not make physical sense, 50

here we will evaluate the stiffness of the CE assuming 51

that fractional crossbridges exist and that attached cross- 52

bridges can be perfectly distributed among the 6 available 53

actin filaments: the alternative calculation is more com-1

plicated and produces stiffness values that differ only in2

the 3rd significant digit. Assuming a duty cycle of 20%3

[82] (values between 5-90% have been reported [88]), at4

full actin-myosin overlap there will be 19.6 crossbridges5

attached to the 6 surrounding actin filaments. Assuming6

that these 19.6 crossbridges are evenly distributed between7

the 6 actin filaments, each single actin will be attached to8

3.26 attached crossbridges.9

At full overlap, the Z-line is 1 actin filament length LA
10

(1.12 µm in rabbits [61]) from the M-line. The average11

point of crossbridge attachment is in the middle of the half-12

myosin at a distance of 0.45 µm from the M-line (0.1µm is13

bare and 0.35µm is half of the remaining length), which is14

LA−0.45 µm from the Z-line. A single actin filament has a15

stiffness of 46−68 pN/nm [61] while a single crossbridge16

has a stiffness of 0.69± 0.47 pN/nm [63]. Since stiffness17

scales inversely with length, actin’s stiffness between the Z-18

line and the average attachment point is 81.8−121 pN/nm.19

Finally, the stiffness of each actin filament and its 3.2620

attached crossbridges is 0.712 − 3.67 pN/nm and all 621

together have a stiffness of 4.27− 22.0 pN/nm.22

Myosin has a similar stiffness as a single actin fila-23

ment [62], with the section between the average attach- 1

ment point and the M-line having a stiffness of 76.9 − 2

113 pN/nm. The final active stiffness of half-sarcomere is 3

4.05− 18.4 pN/nm which comes from comes from the se- 4

ries connection of the group of 6 actin filaments, with 19.6 5

crossbridges, and finally the single myosin filament. When 6

this procedure is repeated assuming that only a single cross- 7

bridge is attached the stiffness drops to 0.22−1.15 pN/nm, 8

which is slightly less than the stiffness of a single cross- 9

bridge 15. 10

The force-length profile of a single rabbit titin has been 11

measured by Kellermayer et al. [89] using laser tweezers to 12

apply cyclical stretches. By digitizing Fig. 4B (blue line) 13

of Kellermayer et al. [89] we arrive at a stiffness for titin 14

of 0.0058− 0.0288 pN/nm at 2µm (for a total sarcomere 15

length of 4µm or 1.62ℓMo ), and 0.0505− 0.0928 pN/nm 16

at 4µm (8µm or 3.25ℓMo ). Since there are 6 titin fila- 17

ments acting in parallel for each half-sarcomere, we end up 18

with the total stiffness for titin ranging between 0.0348− 19

0.173 pN/nm at 2µm and 0.303−0.557 pN/nm at 4µm. 20

When activated, the stiffness of our rabbit psoas linear-titin 21

model (described in Sec. 3.3, fitted in Appendix B.3, and 22

with the parameters shown in Appendix H) doubles, which 23

would increase titin’s stiffness to 0.0696− 0.346 pN/nm 24

at 2µm and 0.606− 1.11 pN/nm at 4µm. 25

Comparing the actin-myosin and titin stiffness ranges 26

(Fig. 14) makes it clear that the stiffness of actin-myosin 27

with 1 attached crossbridge (AM:Low in Fig. 14) is compa- 28

rable to the highest stiffness values we have estimated for 29

titin (AT:High in Fig. 14). When all 20% of the available 30

crossbridges are attached (AM:High in Fig. 14), the aver- 31

age stiffness of the actin-myosin load path is roughly one 32

order of magnitude stiffer than the highest stiffness values 33

of titin (AT:High in Fig. 14), and two to three orders of 34

magnitude higher than the lowest stiffness titin load path 35

(PT:Low in Fig. 14). Similarly, the maximum XE stiffness 36

and titin stiffness in this work are separated by roughly an 37

order of magnitude: the cat soleus model has a XE stiff- 38

ness of 47.9fM
o /ℓMo and maximum active titin stiffness of 39

15See main ActinMyosinAndTitinStiffness.m in the elife2023 branch
of accompanying code repository for details.
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Figure 14: The stiffness of a rabbit’s actin-myosin load path
with a single attached crossbridge (1 XB) exceeds the stiff-
ness of its titin filament at lengths of 2µm (1.62ℓMo ) (com-
pare AM:Low to PT:Low and PT:High). Only when titin
is stretched to 4µm (3.25ℓMo ) does its stiffness (PT:High
and AT:High) become comparable to the actin-myosin with
a single attached crossbridge (AM:Low). At higher activa-
tions and modest lengths, the stiffness of the actin-myosin
load path (AM: High) exceeds the stiffness of titin (PT: Low
and AT:Low) by between two and three orders of magnitude.
At higher activations and longer lengths, the stiffness of the
actin-myosin load path (AM: High) exceeds the stiffness
of titin by roughly an order of magnitude (PT:High and
AT:High).

8.98fM
o /ℓMo (Table 1); while the rabbit psoas fibril model 40

has a XE stiffness of 47.9fM
o /ℓMo and maximum active titin 41

stiffness of 4.81fM
o /ℓMo (Appendix H). 42

B Model Fitting 43

Many of the experiments simulated in this work [5], [7] have 44

been performed using cat soleus muscle. While we have 45

been able to extract some architectural parameters directly 46

from the experiments we simulate (fM
o and ℓMo from [7]), 47

we have had to rely on the literature mentioned in Table 48

1 for the remaining parameters. The remaining properties 49

of the model can be solved by first building a viscoelastic1

damping model of the tendon; next, by solving for the2

intrinsic stiffness and damping properties of the CE; and3

finally, by fitting the passive curves (f 1(ℓ̃ 1) and f 2(ℓ̃ 2)) to4

simultaneously fit the passive force-length curve recorded5

by Herzog and Leonard [7], using a mixture of tension6

from titin and the ECM that is consistent with Prado et al.’s7

data [59], all while maintaining the geometric relationship8

between f IgP and f PEVK as measured by Trombitás et al.9

[28].10

B.1 Fitting the tendon’s stiffness and damping11

Similar to previous work [17], we model the force-length12

relation of the tendon using a quintic Bézier spline (Fig.13

15A) that begins at (ℓ̃T, f̃ T) = (1.0, 0) (where ℓ̃T is ten-14

don length normalized by ℓTs , and f̃ T is tension normalized 1

by fM
o ), ends at (ℓ̃T, f̃ T) = (1.0 + eTtoe, f

T
toe) with a nor- 2

malized stiffness of k̃T, and uses the constants f T
toe = 2/3 3

and k̃T = 1.375/eTo (given 30(fM
o /ℓMo ) from Scott and 4

Loeb [75], eTo is thus 4.58%). Using the experimental data 5

of Netti et al. [73] we have also constructed a curve to 6

evaluate the damping coefficient of the tendon. The nor- 7

malized tendon stiffness (termed storage modulus by Netti 8

et al. [73]) and normalized tendon damping (termed loss 9

modulus by Netti et al. [73]) both have a similar shape as 10

the tendon is stretched from slack to eTo (Fig. 15B and C). 11

The similarity in shape is likely not a coincidence. 12

The nonlinear characteristics (Fig. 15) tendon originates 13

from its microscopic structure. Tendon is composed of 14

many fiber bundles with differing resting lengths [73]. Ini- 15

tially the tendon’s fiber bundles begin crimped, but gradu- 16

ally stretch as the tendon lengthens, until finally all fiber 17

bundles are stretched and the tendon achieves its maximum 18

stiffness (Fig. 15B) and damping (Fig. 15C) [73]. Ac- 19

cordingly, in Eqn. 23 we have described the normalized 20

damping of the tendon as being equal to the normalized 21

stiffness of the tendon scaled by a constant U . To estimate 22

U we have used the measurements of Netti et al. [73] (Fig. 23

15 B and C) and solved a least-squares problem 24

min
n∑
i

((U k̂T
i )− β̂T

i )2 (32)

to arrive at a value of U = 0.057. The resulting damping 25

model (Fig. 15C) fits the measurements of Netti et al. [73] 26

closely. 27

B.2 Fitting the CE’s Impedance 28

We can now calculate the normalized impedance of the XE 29

using the viscoelastic-tendon model we have constructed 30

and Kirsch et al.’s [5] measurements of the impedance of 31

the entire MTU. Since an MTU is structured with a CE in 32

series with a tendon, the compliance of the MTU is given 33

29



Figure 15: The normalized tendon force-length curve (A) has been been fit to match the cat soleus tendon stiffness
measurements of Scott and Loeb [75]. The data of Netti et al. [73] allow us to develop a model of tendon damping as
a linear function of tendon stiffness. By normalizing the measurements of Netti et al. [73] by the maximum storage
modulus we obtain curves that are equivalent to the normalized stiffness (B) and damping (C) of an Achilles tendon
from a rabbit. Both normalized tendon stiffness and damping follow similar curves, but at different scales, allowing us to
model tendon damping as a linear function of tendon stiffness (C).

by 34

1

kM
=

1

kM
AT

+
1

kT
(33)

where kM
AT is the stiffness of the CE in the direction of 35

the tendon. We can calculate kM directly by fitting a line 36

to the stiffness vs tension plot that appears in Figure 12 37

of Kirsch et al. [5] (0.8mm, 0-35 Hz perturbation) and 38

resulting in kM =2.47 N/mm at a nominal force of 5N. 39

Here we use a nominal tension of 5N so that we can later 40

compare our model to the 5N frequency response reported 41

in Figure 3 of Kirsch et al. [5]. Since Kirsch et al. [5] did 42

not report the architectural properties of the experimental 43

specimens, we assume that the architectural properties of1

the cat used in Kirsch et al.’s experiments are similar to2

the properties listed in Table 1. We evaluate the stiffness3

of the tendon model by stretching it until it develops the4

nominal tension of Kirsch et al.’s Figure 3 data (5N), and5

then compute its derivative which amounts to kT =16.96

N/mm. Finally, using Eqn. 33 we can solve for a value of7

kM
AT =2.90 N/mm. Since the inverse of damping adds for8

damping elements in series9

1

βM
=

1

βM
AT

+
1

βT
(34)

we can use a similar procedure to evaluate βM
AT, the damp-10

ing of the CE along the tendon. The value of βM that11

best fits the damping vs. tension plot that appears in Fig-12

ure 12 of Kirsch et al. [5] at a nominal tension of 5N is13

0.0198 Ns/mm. The tendon damping model we have just14

constructed develops 0.697 Ns/mm at a nominal load of 5N.15

Using Eqn. 34, we arrive at βM
AT =0.020 Ns/mm. Due to16

the pennation model, the stiffness and damping values of17

the CE differ from those along the tendon.18

The stiffness of the CE along the tendon is19

kM
AT =

(
∂fM

AT

∂ℓM

) (
∂ℓM

∂ℓMAT

)
(35)

which can be expanded to20

kM
AT =

(∂fM

∂ℓM

)
cosα− fM sinα

(
∂α

∂ℓM

) ∂ℓM

∂ℓMAT
.

(36)
Since we are using a constant thickness pennation model21

α = arcsin

(
H

ℓM

)
(37)

and thus22

∂α

∂ℓM
=

1√
1− (H/ℓM)2

(
−H

(ℓM)2

)
(38)

which simplifies to23

∂α

∂ℓM
=

−H

(ℓM)2 cosα
. (39)

Similarly, the constant thickness pennation model means24

that 1

ℓMAT = ℓM cosα (40)

30



which leads to 2

∂ℓM

∂ℓMAT
=

1

cosα
(41)

Recognizing that 3

kM =

(
∂fM

∂ℓM

)
(42)

we can solve for kM in terms of kM
AT by solving Eqn. 36 for 4

kM and substituting the values of Eqns. 39, and 41. In this 5

case, the values of kM (4.37 N/mm) and kM
AT (4.37 N/mm) 6

are the same to three significant figures. 7

We can use a similar process to transform βM
AT into βM

8

using the pennation model by noting that 9

βM
AT =

(
∂fM

AT

∂vM

) (
∂vM

∂vM
AT

)
(43)

which expands to a much smaller expression 10

βM
AT =

(∂fM

∂vM

)
cosα

( ∂vM

∂vM
AT

)
. (44)

than Eqn. 36 since α does not depend on vM, and thus 11

∂α/∂vM = 0. By taking a time derivative of Eqn. 40 we1

arrive at2

vM
AT = vM cosα− ℓM sinα

(
∂α

∂ℓM

)
vM (45)

which allows us to solve for3

∂vM

∂vM
AT

=
1

cosα− ℓM sinα(∂α/∂ℓM)
(46)

By recognizing that4

βM =
∂fM

∂vM
(47)

and using Eqns. 44 and 46 we can evaluate βM in terms5

of βM
AT. Similar to kM, the value of βM (0.020 Ns/mm) is6

close to βM
AT (0.020 Ns/mm). When this same procedure is7

applied to the stiffness and damping coefficients extracted8

from the gain and phase profiles from Figure 3 of Kirsch9

et al. [5], the values of kM and βM differ (4.37 N/mm10

and 0.0090 Ns/mm) from the results produced using the11

data of Figure 12 (2.90 N/mm and 0.020 Ns/mm). Likely12

these differences arise because we have been forced to use13

a fixed maximum isometric force for all specimens when,14

in reality, this property varies substantially. We now turn15

our attention to fitting the titin and ECM elements, since16

we cannot determine how much of kM and βM are due to17

the XE until the titin and ECM elements have been fitted.18

B.3 Fitting the force-length curves of titin’s seg-19

ments20

The nonlinear force-length curves used to describe21

titin (f 1(ℓ̃ 1) and f 2(ℓ̃ 2) in series), and the ECM22

(f ECM(ℓ̃ ECM)) must satisfy three conditions: the total23

force-length curve produced by the sum of the ECM and24

titin must match the observed passive-force-length rela-25

tion[7]; the proportion of titin’s contribution relative to the26

ECM must be within measured bounds [59]; and finally the27

stiffness of the f 2(ℓ̃ 2) must be a linear scaling of f 1(ℓ̃ 1)28

to match the observations of Trombitás et al. [28]. 1

First, we fit the passive force-length curve to the data of 2

Herzog and Leonard [7] to serve as a reference. The curve 3

f PE begins at the normalized length and force coordinates 4

of (1+ePE0 ,0) with a slope of 0, ends at (1+ePE1 ,1.0) with a 5

slope of kPE
1 = 2/(ePE1 −ePE0 ), and is linearly extrapolated 6

outside of this region. We solve for the ePE0 and ePE1 such 7

that 8

min
n∑
i

(f PE(ℓPEi /ℓMo )− f PE
i /fM

o )2 (48)

the squared differences between f PE and the passive force- 9

length data of Herzog and Leonard [7] (Fig. 2A shows both 10

the data and the fitted f PE curve) are minimized. While 11

f PE is not used directly in the model, it serves as a useful 12

reference for constructing the ECM and titin force-length 13

curves. We assume that the ECM force-length curve is a 14

linear scaling of f PE 15

f ECM(ℓ̃ ECM) = Pf PE(ℓ̃M). (49)

where P is a constant. In this work, we set P to 56% which 16

is the average ECM contribution that Prado et al. [59] 17

measured across 5 different rabbit skeletal muscles16. The 18

remaining fraction, 1− P, of the force-length curve comes 19

from titin. 20

In mammalian skeletal muscle, titin has three elastic 21

segments [59] connected in series: the proximal Ig seg- 22

ment, the PEVK segment, and the distal Ig segment that 23

is between the PEVK region and the myosin filament (Fig. 24

1A). Trombitás et al. [28] labelled the PEVK region of 25

titin with antibodies allowing them to measure the distance 26

between the Z-line and the proximal Ig/PEVK boundary 27

( Zℓ IgP/PEVK), and the distance between the Z-line and 28

the PEVK/distal Ig boundary ( Zℓ PEVK/IgD), while the 29

passive sarcomere was stretched from 2.35− 4.46µm. By 30

fitting functions to Trombitás et al.’s [28] data we can pre- 31

dict the length of any of titin’s segments under the following 32

assumptions: the T12 segment is rigid (Fig. 1A), the distal 33

16Figure 8 of Prado et al. [59] shows titin’s contribution ranging
from values ranging from (24%-57%) which means that the ECM’s
contribution ranges from (43%-76%)
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Ig segment that overlaps with myosin is rigid (Fig. 1A), and 34

that during passive stretching the tension throughout the 35

titin filament is uniform. Since the sarcomeres in Trombitás 36

et al.’s [28] experiments were passively stretched it is rea- 37

sonable to assume that tension throughout the free part of 38

the titin filament is uniform because the bond between titin 39

and actin depends on calcium [33], [38] and crossbridge 40

attachment [8]. 41

We begin by digitizing the data of Figure 5 of Trombitás 42

et al. [28] and using the least-squares method to fit lines to 43

Zℓ IgP/PEVK and Zℓ PEVK/IgD (where the superscripts1

mean fromℓto and so Zℓ IgP/PEVK is the distance from the2

Z-line to the border of the IgP/PEVK segments). From3

these lines of best fit we can evaluate the normalized length4

of the proximal Ig segment5

ℓ̃ IgP =
(

Zℓ IgP/PEVK − LT12
)
/ℓMo , (50)

the normalized length of the PEVK segment6

ℓ̃PEVK =
(

Zℓ PEVK/IgD − Z ℓ IgP/PEVK
)
/ℓMo , (51)

and the normalized length of the distal Ig segment7

ℓ̃ IgD =

(
1

2
ℓM − Z ℓ PEVK/IgD

)
/ℓMo (52)

as a function of sarcomere length. Next, we extract the8

coefficients for linear functions that evaluate the lengths of9

ℓ̃ IgP(ℓ̃M) = A IgP ℓ̃M + b IgP, (53)

ℓ̃PEVK(ℓ̃M) = APEVK ℓ̃M + bPEVK, and (54)

ℓ̃ IgD(ℓ̃M) = A IgD ℓ̃M + b IgD (55)

given the ℓ̃M. The coefficients that best fit the data from10

Trombitás et al. [28] appear in Table 2.11

These functions can be scaled to fit a titin filament of12

a differing geometry. Many of the experiments simulated13

in this work used cat soleus. Although the lengths of titin14

filament segments in cat soleus have not been measured,15

we assume that it is a scaled version of a human soleus titin16

filament (68 proximal Ig domains, 2174 PEVK residues,17

and 22 distal Ig domains [28]) since both muscles con-18

tain predominately slow-twitch fibers: slow twitch fibers19

tend to express longer, more compliant titin filaments [59].20

Since the optimal sarcomere length in cat skeletal muscle21

is shorter than in human skeletal muscle (2.43 µm vs. 2.7322

µm, [76]) the coefficients for Eqns. 53-55 differ slightly23

(see the feline soleus column in Table 2). In addition, by24

assuming that the titin filament of cat skeletal muscle is a25

scaled version of the titin filament found in human skeletal26

muscle, we have implicitly assumed that the cat’s skeletal27

muscle titin filament has 60.5 proximal Ig domains, 1934.728

PEVK residues, and 19.6 distal Ig domains. Although a29

fraction of a domain does not make physical sense, we have30

not rounded to the nearest domain and residue to preserve31

the sarcomere length-based scaling.32

In contrast, the rabbit psoas fibril used in the simula-33

tion of Leonard et al. [8] has a known titin geometry (5034

proximal Ig domains, 800 PEVK residues, and 22 distal35

Ig domains [59]) which differs substantially from the iso-36

form of titin expressed in the human soleus. To create the37

rabbit psoas titin length functions ℓ̃ IgPR (ℓ̃M), ℓ̃PEVK
R (ℓ̃M),38

and ℓ̃ IgDR (ℓ̃M) we begin by scaling the human soleus PEVK 1

length function ℓ̃PEVK
H (ℓ̃M) by the relative proportion of 2

PEVK residues of 800/2174. The length of the two Ig 3

segments 4

ℓ̃ IgR (ℓ̃M) =
1

2
ℓ̃M− L̃T12− L̃ IgD−(800/2174)ℓ̃PEVK

H (ℓ̃M)

(56)
is what remains from the half-sarcomere once the rigid 5

lengths of titin (0.100 µm for LT12 and 0.8150 µm for L IgD
6

[61]) and the PEVK segment length have been subtracted 7

away. The function that describes ℓ̃ IgPR (ℓ̃M) and ℓ̃ IgDR (ℓ̃M) 8

can then be formed by scaling ℓ̃ IgR (ℓ̃M) by the proportion of 9

Ig domains in each segment 10

ℓ̃ IgPR (ℓ̃M) =

(
50

50 + 22

)
ℓ̃ IgR (ℓ̃M), and (57)

ℓ̃ IgDR (ℓ̃M) =

(
22

50 + 22

)
ℓ̃ IgR (ℓ̃M) (58)

which produce the coefficients that appear in the rabbit 11

psoas column in Table 2. While we have applied this ap- 12

proach to extend Trombitás et al.’s [28] results to a rabbit 13

psoas, in principle this approach can be applied to any iso- 14

form of titin provided that its geometry is known, and the 15

Ig domains and PEVK residues in the target titin behave 16

similarly to those in human soleus titin. 17

The only detail that remains is to establish the shape of 18

the IgP, PEVK, and IgD force-length curves. Studies of 19

individual titin filaments, and of its segments, make it clear 20

that titin is mechanically complex. For example, the tandem 21

Ig segments (the IgD and IgP segments) are composed of 22

many folded domains (titin from human soleus has two 23

Ig segments that together have nearly 100 domains [28]). 24

Each domain appears to be a simple nonlinear spring until 25

it unfolds and elongates by nearly 25 nm in the process 26

[90]. Unfolding events appear to happen individually during 27

lengthening experiments [90], with each unfolding event 28

occurring at a slightly greater tension than the last, giving 29

an Ig segment a force-length curve that is saw-toothed. 30

Although detailed models of titin exist that can simulate the 31

folding and unfolding of individual Ig domains, this level 32
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Table 2: The coefficients of the normalized lengths of
ℓ̃ IgP(ℓ̃M), ℓ̃PEVK(ℓ̃M), and ℓ̃ IgD(ℓ̃M) from Eqns. 53-55
under passive lengthening. These coefficients have been
extracted from data of Figure 5 of Trombitás et al. [28]
using a least-squares fit. Since Figure 5 of Trombitás et
al. [28] plots the change in segment length of a single
titin filament against the change in length of the entire sar-
comere, the resulting slopes are in length normalized units.
The slopes sum to 0.5, by construction, to reflect the fact
that these three segments of titin stretch at half the rate of
the entire sarcomere (assuming symmetry). The cat soleus
titin segment coefficients have been formed using a sim-
ple scaling of the human soleus titin segment coefficients,
and so, are similar. Rabbit psoas titin geometry [59] dif-
fers dramatically from human soleus titin [28] and produce
a correspondingly large difference in the coefficients that
describe the length of the segments of rabbit psoas titin.

Coefficient Human Feline Rabbit
Soleus [28] Soleus Psoas

A IgP 0.177 0.177 0.262
b IgP -0.101 -0.113 -0.189
APEVK 0.266 0.266 0.122
bPEVK -0.197 -0.221 -0.100
A IgD 0.057 0.057 0.115
b IgD -0.033 -0.033 -0.083

of detail comes at a cost of a state for each Ig domain which 33

can add up to nearly a hundred extra states [42] in total. 34

Active and passive lengthening experiments at the 35

sarcomere-level hide the complexity that is apparent when 36

studying individual titin filaments. The experiments of 37

Leonard et al. [8] show that the sarcomeres in a fila- 38

ment (from rabbit psoas) mechanically fail when stretched 39

passively to an average length of 2.86 ℓMo , but can reach 40

3.38 ℓMo when actively lengthened. Leonard et al. [8] 41

showed that titin was the filament bearing these large forces 42

since the sarcomeres were incapable of developing active1

or passive tension when the experiment was repeated after2

the titin filaments were chemically cut. It is worth noting3

that the forces measured by Leonard et al. [8] contain none4

of the complex saw-tooth pattern indicative of unfolding5

events even though 72 of these events would occur as each6

proximal and distal Ig domain fully unfolded and reached7

its maximal length17. Although we cannot be sure how8

many unfolding events occurred during Leonard et al.’s ex-9

periments [8], due to sarcomere non-homogeneity [91], it10

is likely that many Ig unfolding events occurred since the11

17Referred to as contour lengths in a worm-like chain model [66]

average sarcomere length at failure 3.38 ℓMo was longer than12

the maximum length of 2.4-2.7 ℓMo that would be predicted13

from the geometry of rabbit psoas titin18.14

Since we are interested in a computationally efficient15

model that is accurate at the whole muscle level, we model16

titin as a multi-segmented nonlinear spring but omit the17

states needed to simulate the folding and unfolding of Ig18

domains. Simulations of active lengthening using our titin19

model will exhibit the enhanced force development that20

appears in experiments [7], [8], but will lack the nonlin-21

ear saw-tooth force-length profile that is measured when 1

individual titin filaments are lengthened [90]. To have the 2

broadest possible application, we will fit titin’s force-length 3

curves to provide reasonable results for both moderate [7] 4

and large active stretches [8]. Depending on the applica- 5

tion, it may be more appropriate to use a stiffer force-length 6

curve for the Ig segment if normalized sarcomere lengths 7

stays within 1.5 ℓMo and no unfolding events occur as was 8

done by Trombitás et al. [66]. 9

To ensure that the serially connected force-length curves 10

of f 1(ℓ̃ 1) and f 2(ℓ̃ 2) closely reproduce (1− P)f PE(ℓ̃M), 11

we are going to use affine transformations of f PE to de- 12

scribe f 1(ℓ̃ 1) and f 2(ℓ̃ 2). The total stiffness of the half- 13

sarcomere titin model is given by 14

k̃Ti = 2(1− P)
∂f PE

∂ℓ̃M
(59)

which is formed by the series connection of f 1(ℓ̃ 1) and 15

f 2(ℓ̃ 2) 16

1

k̃Ti
=

1

k̃ 1
+

1

k̃ 2
. (60)

Since each of titin’s segments is exposed to the same ten- 17

sion in Trombitás et al.’s experiment [28] the slopes of the 18

lines that Eqns. 53-55 describe are directly proportional 19

to the relative compliance (inverse of stiffness) between of 20

each of titin’s segments. Using this fact, we can define the 21

normalized stretch rates of the proximal titin segment 22

C1 = A IgP +APEVKQ =
∆ℓPEVKQ+∆ℓ IgP

∆ℓM
(61)

18Rabbit psoas titin [59] attaches at the Z-line with a 100nm rigid
segment that spans to T12 epitope, is followed by 50 Ig domains, 800
PEVK residues, and another 22 Ig domains until it attaches to the 800
nm half-myosin filament which can also be considered rigid. If the Ig
domains were all unfolded (adding around 25 nm [90]) and each PEVK
residue could reach a maximum length of between 0.32nm [66] (see
Fig. 5: 700nm/2174 residues is 0.32 nm per residue) to 0.38 nm [92]
(see pg. 254), two titins in series would reach a length of 2(100nm +
72(25nm) + 800(0.32nm-0.38nm) + 800 nm) = 5192-6008nm. Since
rabbit sarcomeres have an ℓMo of 2.2µm a sarcomere could be stretched
to a length between 5192-6008nm, or 2.4-2.7 ℓMo , before the contour
lengths of the tandem Ig and PEVK segments is reached.
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and the distal titin segment 23

C2 = APEVK(1−Q)+A IgD =
∆ℓPEVK (1−Q) +∆ℓ IgD

∆ℓM
(62)

which are proportional to the compliance of two titin seg- 24

ments in our model. When both the f 1(ℓ̃ 1) and f 2(ℓ̃ 2) 25

curves are beyond the toe region the stiffness is a constant 26

and is given by 27

k̃ 1
toe =

∆f̃

∆ℓ̃1
(63)

and 28

k̃ 2
toe =

∆f̃

∆ℓ̃2
. (64)

Dividing Eqn. 63 by 64 eliminates the unknown ∆f̃ and 29

results in an expression that relates the ratio of the terminal 30

linear stiffness of f 1(ℓ̃ 1) and f 2(ℓ̃ 2) 31

k̃ 1
toe

k̃ 2
toe

=
∆ℓ̃2

∆ℓ̃1
=

C2

C1
(65)

to the relative changes in Eqns. 61 and 62. Substituting 32

Eqns. 65, and 60 into Eqn. 59 yields the expression1

1

k̃ 2
toe(C

2/C1)
+

1

k̃ 2
toe

=
1

k̃Ti∗
(66)

which can be simplified to2

k̃ 2
toe =

(
C1 +C2

C2

)
k̃Ti∗ (67)

and this expression can be evaluated using the terminal3

stiffness of titin k̃Ti∗ and the coefficients listed in Table 2.4

Substituting Eqn. 67 into Eqn. 65 yields5

k̃ 1
toe =

(
C1 +C2

C1

)
k̃Ti∗. (68)

The curves f 1(ℓ̃ 1) and f 2(ℓ̃ 2) can now be formed by6

scaling and shifting the total force-length curve of titin (1−7

P)f PE. By construction, titin’s force-length curve develops8

a tension of (1− P), and has reached its terminal stiffness,9

when the CE reaches a length ℓ̃M∗ such that f PE(ℓ̃M∗) = 1.10

Using Eqns. 53-55 and the appropriate coefficients in Table11

2 we can evaluate the normalized length developed by the12

ℓ1 segment13

ℓ̃1toe = ℓ̃ IgP(ℓ̃M∗) + Q ℓ̃PEVK(ℓ̃M∗) (69)

and ℓ2 segment14

ℓ̃2toe = (1−Q) ℓ̃PEVK(ℓ̃M∗) + ℓ̃ IgD(ℓ̃M∗) (70)

at a CE length of ℓ̃M∗. The f 1(ℓ̃ 1) curve is formed by15

shifting and scaling the (1−P)f PE curve so that it develops16

a normalized tension of (1 − P) and a stiffness of k̃ 1
toe at17

a length of ℓ̃1toe. Similarly, the f 2(ℓ̃ 2) curve is made by18

shifting and scaling the (1 − P)f PE curve to develop a19

normalized tension of (1 − P) and a stiffness of k̃ 2
toe at a20

length of ℓ̃2toe.21

By construction, the spring network formed by the22

f ECM(ℓ̃ ECM), f 1(ℓ̃ 1), and f 2(ℓ̃ 2) curves follows the fit-23

ted f PE curve (Fig. 3A) such that the ECM curve makes24

up 56% of the contribution. When the CE is active and 1

ℓ̃1 is effectively fixed in place, the distal segment of titin 2

contributes higher forces since ℓ̃2 undergoes higher strains 3

(Fig. 3A). Finally, when the experiment of Trombitás et 4

al. [28] are simulated the movements of the IgP/PEVK and 5

PEVK/IgD boundaries in the titin model closely follow the 6

data (Fig. 3C). 7

The process we have used to fit the ECM and titin’s seg- 8

ments makes use of data within modest normalized CE 9

lengths (2.35-4.46µm, or 0.86-1.63ℓMo [28]). Scenarios in 10

which the CE reaches extremely long lengths, such as dur- 11

ing injury or during Leonard et al.’s experiment [8], require 12

fitting titin’s force-length curve beyond the typical ranges 13

observed in-vivo. The WLC model has been used success- 14

fully to model the force-length relation of individual titin 15

segments [66] at extreme lengths. In this work, we consider 16

two different extensions to f 1(ℓ̃ 1) and f 2(ℓ̃ 2): a linear 17

extrapolation, and the WLC model. Since the fitted f PE 18

curve is linearly extrapolated, so too are the f ECM(ℓ̃ ECM), 19

f 1(ℓ̃ 1), and f 2(ℓ̃ 2) curves by default. Applying the WLC 20

to our titin curves requires a bit more effort. 21

We have modified the WLC to include a slack length L̃W
S 22

(the superscript W means WLC) so that the WLC model 23

can made to be continuous with f 1(ℓ̃ 1) and f 2(ℓ̃ 2). The 24

normalized force developed by our WLC model is given by 25

fW =


B

(
ℓ̃W +

1

4(1− ℓ̃W)2
− 1

4

)
ℓ̃W > 0

0 otherwise

(71)

where B is a scaling factor and the normalized segment 26

length ℓ̃W is defined as 27

ℓ̃W =
ℓW − L̃W

S

LW
C − L̃W

S

(72)

where L̃W
S is the slack length, and LW

C is the contour length 28

of the segment. To extend the f 1(ℓ̃ 1) curve to follow the 29

WLC model, we first note the normalized contour length of 30

the ℓ1 segment 31

L̃1W
C =

N IgP 25nm +QNPEVK 0.38nm
ℓMo

(73)
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by counting the number of proximal Ig domains (N IgP), 32

the number of PEVK residues (QNPEVK) associated with 33

ℓ1 and by scaling each by the maximum contour length 34

of each Ig domain (25nm [90]), and each PEVK residue 35

(between 0.32 [66] and 0.38 nm [92] see pg. 254). This 36

contour length defines the maximum length of the segment, 37

when all of the Ig domains and PEVK residues have been 38

unfolded. Similarly, the contour length of L̃2W
C is given by 39

L̃2W
C =

N IgD 25nm + (1−Q)NPEVK 0.38nm
ℓMo

. (74)

Next, we define the slack length by linearly extrapolating 40

backwards from the final fitted force (1− P) 41

L̃1W
S =

(1− P)

k̃ 1
toe

, (75)

and similarly1

L̃2W
S =

(1− P)

k̃ 2
toe

. (76)

We can now solve for B in Eqn. 71 so that f 1(ℓ̃ 1) and2

f 2(ℓ̃ 2) are continuous with each respective WLC extrap-3

olation. However, we do not use the WLC model directly4

because it contains a numerical singularity which is prob-5

lematic during numerical simulation. Instead, we add an6

additional Bézier segment to fit the WLC extension that7

spans between forces of (1 − P) and twice the normal-8

ized failure force (2 × 5.14fM
o ) noted by Leonard et al.9

[8]. To fit the shape of the final Bézier segment, we adjust10

the locations of the internal control points to minimize the11

squared differences between the modified WLC model and12

the final Bézier curve (Fig. 10A). The final result is a set13

of curves (f 1(ℓ̃ 1), f 2(ℓ̃ 2), and f ECM(ℓ̃ ECM)) which, be-14

tween forces 0 and (1−P), will reproduce f PE, Trombitás15

et al.’s measurements [28], and do so with a reasonable16

titin-ECM balance [59]. For forces beyond (1 − P), the17

curve will follow the segment-specific WLC model up to18

twice the expected failure tension noted by Leonard et al.19

[8].20

B.4 Fitting the XE’s Impedance21

With the passive curves established, we can return to the22

problem of identifying the normalized maximum stiffness23

k̃X
o and damping β̃X

o of the lumped XE element. Just prior24

to discussing titin, we had evaluated the impedance of the25

cat soleus CE in Kirsch et al.’s [5] Figure 12 to be kM =2.9026

N/mm and βM =0.020 Ns/mm at a nominal active tension27

of 5N. The normalized stiffness kM can be found by taking28

the partial derivative of Eqn. 15 with respect to ℓ̃M29

kM = a
∂f L(ℓ̃S + L̃M)

∂ℓ̃M

(
k̃X
o ℓ̃X + β̃X

o ṽX
)

+af L(ℓ̃S + L̃M)

(
k̃X
o

∂ℓ̃X

∂ℓ̃M

)

+
∂f 2(ℓ̃ 2)

∂ℓ̃M
+

∂f ECM(ℓ̃ ECM)

∂ℓ̃M
. (77)

By noting that all of our chosen state variables in Eqn.30

13 are independent and by making use of the kinematic31

relationships in Eqns. 9 and 10 we can reduce Eqn. 77 to32

kM = af L(ℓ̃S + L̃M)

(
1

2
k̃X
o

)
+
df 2(ℓ̃ 2)

dℓ2
1

2
+

df ECM(ℓ̃ ECM)

dℓECM

1

2
(78)

and solve for k̃X
o33

k̃X
o =

2

af L(ℓ̃S + L̃M)

(
kM − 1

2

df 2(ℓ̃ 2)

dℓ2

−1

2

df ECM(ℓ̃ ECM)

dℓECM

)
. (79)

When using to the data from Figure 12 in Kirsch et al.34

[5], we end up with k̃X
o = 49.1 fM

o /ℓMo for the elastic-35

tendon model, and k̃X
o = 41.8 fM

o /ℓMo for the rigid-tendon36

model. When this procedure is repeated for Figure 3 of37

Kirsch et al. [5] (from a different specimen) we are left38

with k̃X
o = 74.5 fM

o /ℓMo for the elastic-tendon model and 1

k̃X
o = 59.1 fM

o /ℓMo for the rigid-tendon model. The value 2

for k̃X
o is much larger than kM because the a needed to 3

generate 5N is only 0.231. Similarly, we can form the 4

expression for the normalized damping of the CE by taking 5

the partial derivative of Eqn. 15 with respect to ṽM
6

β̃M = af L(ℓ̃S + L̃M)

(
β̃X
o

dṽX

dṽM

)
+ β̃ ϵ. (80)

As with kM, the expression for β̃M can be reduced to 7

β̃X
o =

2

af L(ℓ̃S + L̃M)

(
β̃M − β̃ ϵ

)
(81)

which evaluates to β̃X
o = 0.347 fM

o /(ℓMo /s) for both the 8

elastic and rigid-tendon models using Kirsch et al.’s [5] 9

Figure 12 data. The damping coefficients of the elastic and 10

rigid-tendon models is similar because the damping coeffi- 11

cient of the musculotendon is dominated by the damping 12

coefficient of CE. When the data from Kirsch et al.’s [5] 13

Figure 3 is used, the damping coefficients of the elastic 14
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Table 3: Normalized titin and crossbridge parameters fit to
data from the literature.

Symbol Value Unit Source
k̃Ti 3.88 fM

o /ℓMo [7] [59]
k̃ 1 5.17 fM

o /ℓMo [28]
k̃ 2 8.42 fM

o /ℓMo [28]
k̃X
o 74.5 fM

o /(ℓMo ) [5] (Fig. 3)
β̃X
o 0.155 fM

o /(ℓMo /s) [5] (Fig. 3)
k̃X
o 49.1 fM

o /(ℓMo ) [5] (Fig. 12)
β̃X
o 0.347 fM

o /(ℓMo /s) [5] (Fig. 12)

and rigid-tendon models are β̃X
o = 0.155 fM

o /(ℓMo /s) and 15

β̃X
o = 0.153 fM

o /(ℓMo /s) respectively. 16

The dimensionless parameters k̃X
o and β̃X

o can be used 17

to approximate the properties of other MTUs given fM
o 18

and ℓMo . The stiffness and damping of the lumped cross- 19

bridge element will scale linearly with fM
o and inversely 20

with ℓMo provided the impedance properties of individual 21

crossbridges, and the maximum number of crossbridges at- 22

tached per sarcomere, is similar between a feline’s skeletal 23

muscle sarcomeres and those of the target MTU. This ap- 24

proximation is rough, however, since the values for k̃X
o and1

β̃X
o (Table 3) have a relative error of 41% and 76% when2

evaluated using Kirsch et al.’s [5] Figure 3 and Figure 12.3

In addition, when simulated, the stiffness and damping of4

the LTI system of best fit may differ from k̃X
o and β̃X

o at low5

frequencies because the movement of the attachment point6

has been ignored in Eqns. 79 and 81. This approximation7

explains why the VEXAT’s stiffness profile (Fig. 7 A. and8

C) is below Kirsch et al.’s [5] data, despite having used9

this data to fit the kM and β̃M terms in Eqns. 79 and 81.10

The accuracy of this approximation, however, improves at11

higher frequencies (Fig. 6 E and F) because the attachment12

point’s movements become increasingly limited due to the13

time constant τ S in Eqn. 16. Unfortunately this is a trade-14

off due to the formulation of Eqn. 16: the VEXAT mode15

can fit Kirsch et al.’s [5] data at low frequencies, or high16

frequencies, but not both simultaneously.17

C Model Initialization18

Solving for an initial state is challenging since we are given19

a, ℓP, and vP and must solve for vS, ℓS, and ℓ1 for a rigid-20

tendon model, and additionally ℓM if an elastic-tendon21

model is used. The type of solution that we look for is22

one that produces no force or state transients soon after a23

simulation begins in which activation and path velocity is24

well approximated as constant. Our preliminary simulations25

found that satisfactory solutions were found by iterating26

over both ℓ̃M and ṽM using a nested bisection search that27

looks for values which approximately satisfies Eqn. 22,28

result in small values for ˙̃vS from Eqn. 16, and begins with29

balanced forces between the two segment titin model in30

Eqn. 20.31

In the outer loop, we iterate over values of ℓ̃M. Given a,32

ℓP, vP, and a candidate value of ℓ̃M, we can immediately33

solve for α and ℓT using the pennation model. We can nu-34

merically solve for the value of another state, ℓ1, using the35

kinematic relationship between ℓM and ℓ1 and by assuming 1

that the two titin segments are in a force equilibrium 2

f 1(ℓ̃ 1)− f 2(ℓ̃ 2) = 0. (82)

In the inner loop, we iterate over values of ṽM between 0 3

and vP cosα (we ignore solutions in which the sign of vM
4

and vT differ) to find the value of ṽM that best satisfies Eqn. 5

22. Prior to evaluating Eqn. 22, we need to set both ṽX and 6

ℓ̃X. Here we choose a value for ṽX that will ensure that the 7

XE is not producing transient forces 8

ṽX = 0 (83)

and we use fixed-point iteration to solve for ℓ̃X such that 9

Eqn. 16 evaluates to zero. Now the value of ṽS can be 10

directly evaluated using the candidate value of ṽM, the first 11

derivative of Eqn. 9, and the fact that we have set ṽX to zero. 12

Finally, the error of this specific combination of ℓ̃M and ṽM
13

is evaluated using Eqn. 22, where the best solution leads to 14

the lowest absolute value for of f̃ ϵ in Eqn. 22. If a rigid- 15

tendon model is being initialized the procedure is simpler 16

because the inner loop iterating over ṽM is unnecessary: 17

given vP and ṽX are zero, the velocities ṽM and ṽS can be 18

directly solved using the first derivative of Eqn. 9. While 19

in principle any root solving method can be used to solve 20

this problem, we have chosen to use the bisection method 21

to avoid local minima. 22

D Evaluating a muscle model’s fre- 23

quency response 24

To analyze the the frequency response of a muscle to length 25

perturbation we begin by evaluating the length change 26

x(t) = ℓMT − ℓ̂MT (84)

and force change 27

y(t) = f T − f̂ T (85)

with respect to the nominal length (ℓ̂MT) and nominal force 28

(f̂ T). If we approximate the muscle’s response as a linear 29

time invariant transformation h(t) we can express 30

y(t) = h(t) ∗ x(t) (86)
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where ∗ is the convolution operator. Each of these signals 31

can be transformed into the frequency-domain [78] by tak- 32

ing the Fourier transform F(·) of the time-domain signal, 33

which produces a complex (with real and imaginary parts) 34

signal. Since convolution in the time-domain corresponds 35

to multiplication in the frequency-domain, we have 36

Y (s) = H(s)X(s). (87)

In Eqn. 87 we are interested in solving for H(s). While it 37

might be tempting to evaluate H(s) as 38

H(s) =
Y (s)

X(s)
(88)

the result will poorly estimate H(s) because Y (s) is only 39

approximated by H(s)X(s): Y (s) may contain nonlin- 40

earities, non-stationary signals, and noise that cannot be1

described by H(s)X(s).2

Using cross-spectral densities, Koopmans [79] (p. 140)3

derived the estimator4

H(s) =
Gyx

Gxx
(89)

that minimizes the squared errors between Y (s) and its5

linear approximation of H(s)X(s). The cross-spectral6

density Gxy between x(t) and y(t) is given by7

Gxy = F(x(t) ⋆ y(t)) (90)

the Fourier transform of the cross-correlation (⋆) between8

x(t) and y(t). When the order of x(t) and y(t) are reversed9

in Eqn. 90 the result is Gyx, while Gxx and Gyy are pro-10

duced by taking the Fourier transform of x(t) ⋆ x(t) and11

y(t) ⋆ y(t) respectively.12

Though Koopmans’s [79] estimator is a great improve-13

ment over Eqn. 88, the accuracy of the estimate can be fur-14

ther improved using Welch’s method [93]. Welch’s method15

[93] breaks up the time domain signal into K segments,16

transforms each segment into the frequency domain, and17

returns the average across all segments. Using Welch’s18

method [93] with K segments allows us to evaluate19

H(s) =
GK

yx

GK
xx

(91)

which has a lower frequency resolution than Eqn. 89, but20

an improved accuracy in H(s). Now we can evaluate the21

gain of H(s) as22

|H(s)| =
√

(R(H(s))2 + I(H(s))2) (92)

while the phase of H(s) is given by23

ϕ = arctan

(
I(H(s))

R(H(s))

)
(93)

where R(H(s)) and I(H(s)) are the real and imaginary24

parts of H(s) respectively.25

The transfer function estimated in Eqn. 91 is meaning-26

ful only when y(t) can be approximated as a linear time-27

invariant function of x(t). By evaluating the coherence [79]28

(p. 137) between x(t) and y(t)29

Cxy(s) =
|Gxy(s)|√

Gyy(s)Gxx(s)
(94)

we can determine the strength of the linear association be-30

tween X(s) and Y (s) at each frequency. When Cxy is close31

to 1 it means that Y (s) is well approximated by H(s)X(s).32

As Cxy approaches 0, it means that the approximation of33

Y (s) by H(s)X(s) becomes poor. 1

Kirsch et al. [5] analyzed a bandwidth that spanned from 2

4 Hz up to the cutoff frequency of the low-pass filter ap- 3

plied to the input signal x(t) (15 Hz, 35 Hz, and 90 Hz). 4

Unfortunately, we cannot use this bandwidth directly when 5

analyzing model output because we have no guarantee that 6

the simulated output is sufficiently linear in this range. In- 7

stead, to strike a balance between accuracy and consistency 8

with Kirsch et al. [5], we analyze the bandwidth that is 9

common to Kirsch et al.’s [5] defined range and has the 10

minimum acceptable (Cxy)
2 of 0.67 that is pictured in Fig. 11

3 of Kirsch et al. 12

37



E Simulation summary data of Kirsch et al. 13

Table 4: Mean normalized stiffness coefficients (A.), mean normalized damping coefficients (B.), VAF (C.), and the
bandwidth (D.) of linearity (coherence squared > 0.67) for models with elastic-tendons. Here the proposed model has
been fitted to Figure 12 of Kirsch et al. [5], while the experimental data from Kirsch et al. [5] comes from Figures 9
and 10. Experimental data from Figure 12 from Kirsch et al. has not been included in this table because it would only
contribute 1 entry and would overwrite values from Figures 9 and 10. The impedance experiments at each combination
of perturbation amplitude and frequency have been evaluated at 10 different nominal forces linearly spaced between
2.5N and 11.5N. The results presented in the table are the mean values of these ten simulations. The VAF is evaluated
between the model and the spring-damper of best fit, rather than to the response of biological muscle (which was not
published by Kirsch et al. [5]). Finally, model values for the VAF (C.) and the bandwidth of linearity (D.) that are worse
than those published by Kirsch et al. [5] appear in bold font.

Kirsch et al. Model Hill
A. Norm. Stiffness (KF ) 15Hz 35Hz 90Hz 15Hz 35Hz 90Hz 15Hz 35Hz 90Hz

0.4 mm 0.56 0.85 0.87 0.33 0.32 0.28 0.45 1.02 1.68
0.8 mm 0.46 0.30 0.30 0.24 0.30 0.66 1.37
1.6 mm 0.28 0.38 0.50 0.22 0.23 0.19 0.18 0.36 0.96

B. Norm. damping β
F 15Hz 35Hz 90Hz 15Hz 35Hz 90Hz 15Hz 35Hz 90Hz

0.4 mm 0.0118 0.0049 0.0038 0.0059 0.0044 0.0039 0.0196 0.0105 0.0029
0.8 mm 0.0118 0.0049 0.0038 0.0060 0.0044 0.0039 0.0157 0.0098 0.0033
1.6 mm 0.0118 0.0049 0.0038 0.0062 0.0045 0.0039 0.0112 0.0079 0.0029

C. VAF (%) 15Hz 35Hz 90Hz 15Hz 35Hz 90Hz 15Hz 35Hz 90Hz
0.4 mm 64 74 86 28 44 75
0.8 mm 78-99% 74 85 94 37 38 68
1.6 mm 76 91 97 48 35 62

D. Bandwidth (Hz) s.t. 15Hz 35Hz 90Hz 15Hz 35Hz 90Hz 15Hz 35Hz 90Hz
Coherence2 > 0.67

0.4 mm 4-15 4-35 4-90 4-15 4-35 4-90 4-15 4-35 4-90
0.8 mm 4-15 4-35 4-90 4-15 4-35 4-90 4-15 4-35 7-90
1.6 mm 4-15 4-35 4-90 4-15 4-35 4-90 4-15 4-35 7-90
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Table 5: Mean normalized stiffness coefficients (A.), mean normalized damping coefficients (B.), VAF (C.), and the
bandwidth (D.) of linearity (coherence squared > 0.67) for models with rigid tendons. All additional details are identical
to those of Table except the tendon of the model is rigid.

Kirsch et al. Model Hill
A. Norm. Stiffness (KF ) 15Hz 35Hz 90Hz 15Hz 35Hz 90Hz 15Hz 35Hz 90Hz

0.4 mm 0.56 0.85 0.87 0.32 0.31 0.28 0.05 0.01 0.01
0.8 mm 0.46 0.30 0.29 0.25 0.05 0.00 0.01
1.6 mm 0.28 0.38 0.50 0.23 0.23 0.20 0.04 0.00 0.02

B. Norm. damping β
F 15Hz 35Hz 90Hz 15Hz 35Hz 90Hz 15Hz 35Hz 90Hz

0.4 mm 0.0118 0.0049 0.0038 0.0054 0.0042 0.0038 0.0217 0.0172 0.0125
0.8 mm 0.0118 0.0049 0.0038 0.0055 0.0042 0.0038 0.0148 0.0111 0.0078
1.6 mm 0.0118 0.0049 0.0038 0.0057 0.0043 0.0039 0.0094 0.0068 0.0046

C. VAF (%) 15Hz 35Hz 90Hz 15Hz 35Hz 90Hz 15Hz 35Hz 90Hz
0.4 mm 86 96 99 95 92 88
0.8 mm 78-99% 85 96 99 89 86 83
1.6 mm 82 95 99 85 82 79

D. Bandwidth (Hz) s.t. 15Hz 35Hz 90Hz 15Hz 35Hz 90Hz 15Hz 35Hz 90Hz
Coherence2 > 0.67

0.4 mm 4-15 4-35 4-90 4-15 4-35 4-90 4-15 4-35 13-90
0.8 mm 4-15 4-35 4-90 4-15 4-35 4-90 4-15 4-35 13-90
1.6 mm 4-15 4-35 4-90 4-15 4-35 4-90 4-15 4-35 13-90
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F Supplementary plots: Gain and phase response rigid-tendon muscle models 14

Figure 16: When coupled with a rigid-tendon, the VEXAT model’s VAF (A.), gain response (B.), and phase response
(C.) more closely follows the data of Kirsch et al. (Figure 3) [5] than when an elastic-tendon is used. This improvement
in accuracy is also observed at the 90 Hz perturbation (D., E., and F.), though the phase response of the model departs
from Kirsch et al.’s data [5] for frequencies lower than 30 Hz. Parts of the Hill model’s response to the 15 Hz perturbation
are better with a rigid-tendon, with a higher VAF (G.), a lower RMSE gain-response (H.). but have a poor phase-response
(I.). In response to the higher frequency perturbations, the Hill model’s response is poor with an elastic (see Fig. 6) or
rigid-tendon. The VAF in response to the 90 Hz perturbation remains low (J.), and neither the gain (K.) nor the phase
response of the Hill model (L.) follow the data of Kirsch et al. [5]. The rigid-tendon Hill model’s nonlinearity was so
strong that the lowest frequency analyzed had to be raised from 4 Hz to 21 Hz to meet the criteria that (Cxy)

2 ≥ 0.67.

15

40



G Supplementary plots: active lengthening on the descending limb 16

Figure 17: Simulation results of the 3 mm/s (A.) active
lengthening experiment of Herzog and Leonard [7] (B.).
As with the 9 mm/s trial, the Hill model’s force response
drops during the ramp due to a small region of negative
stiffness introduced by the descending limb of the force-
length curve (C.), and a reduction in damping (D.) due to
the flattening of the force-velocity curve. Note: neither
model was fitted to this trial.

Figure 18: Simulation results of the 27 mm/s (A.) active
lengthening experiment of Herzog and Leonard [7] (B.).
As with the prior simulations the Hill model exhibits
a small region of negative stiffness introduced by the
descending limb of the force-length curve (C.) and a
drop in damping (D.). Note: neither model was fitted to
this trial.
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H Rabbit psoas fibril model parameters 18

Table 6: The VEXAT and Hill model’s fitted rabbit psoas fibril MTU parameters. As in Table 6, parameters shared by
the VEXAT and Hill model are highlighted in grey. Short forms are used to save space: length ‘len’, velocity ‘vel’,
acceleration ‘acc’, half ‘h’, activation ‘act’, segment ‘seg’, threshold ‘thr’, and stiffness ‘stiff’. The letter preceding a
reference indicates the experimental animal:‘C’ for cat, ‘H’ for human, while nothing at all is rabbit skeletal muscle.
Letters following a reference indicate how the data was used to evaluate the parameter: ‘A’ for arbitrary for simulating
Leonard et al. [8], ‘n/a’ for a parameter that is not applicable to a fibril model, ‘—’ value taken from the cat soleus MTU,
‘C’ calculated, ‘F’ fit, ‘E’ estimated, ‘S’ scaled, and ‘D’ for default if a default value from another model was used. Only
parameters that do not affect the outcome of our simulation of Leonard et al. [8] are marked ‘A’. Clearly the parameters
that appear in this Table do not represent a generic rabbit psoas fibril model, but instead a rabbit psoas fibril model that is
sufficient to simulate the experiment of Leonard et al. [8]. Finally, values for N IgP, NPEVK, and N IgD were obtained by
taking a 70% and 30% average of the values for 3300 kD and 3400 kD titin to match the composition of rabbit psoas titin
as closely as possible.

Parameter Value Source
A. Basic parameters

Max iso force fM
o 1N A

Opt CE len ℓMo 1mm A
Pen angle α 0◦ A
Act time const τA 10ms A,H[17]D
De-act time const τD 40ms A,H[17]D

B. Force-velocity relation: fV(v̂M)

Max shortening vel vM
max 4.5

ℓM
o

s H[17]D
fV at − 1

2v
M
max f̃V

1 0.1 fM
o H[17]D

fV at v̂M = +0 f̃V
2 1.3 fM

o H[17]D
fV at vM

max f̃V
3 1.45 fM

o H[17]D
vM
max scaling sV 0.950 —

C. Active force-length relation: f L(ℓ̃M)
Opt sarcomere len LM

◦ 2.46µm [61]
Actin len L̃A 0.455 ℓMo [61]
Myosin h-len L̃M 0.331 ℓMo [61]
Myosin bare h-len L̃B 0.0163 ℓMo [61]
Offset ∆L − 2

k̃X
o

ℓMo C

D. Passive force-length relation: f PE(ℓ̃M)

Slack len ℓ̃PE
s 1 ℓMo [8]F

Toe len ℓ̃PE
toe 1.71 ℓMo [8]F

Toe force f̃ PE
toe 0.31 fM

o [8]F

Toe stiffness k̃PE
toe 0.870

f M
o

ℓM
o

[8]F
E. Compressive force-length relation: f KE(ℓ̃M)

Slack len ℓ̃PE
s

1
10ℓ

M
o E

Toe len ℓ̃PE
toe 0.00 ℓMo E

Toe force f̃ PE
toe 1.00 fM

o E

F. XE viscoelastic model

Stiffness k̃X
o 49.1

f M
o

ℓM
o

—

Damping β̃X
o 0.347

f M
o

ℓM
o /s —

Acc. time const τ S 1.00e-3 s —
Num acc damping D 1.00 —
Low act threshold aL 0.0500 —
Len tracking gain GL 1000 1

s —
Vel tracking gain GV 1000 —

G. Titin & ECM Parameters
ECM fraction P 0 E
PEVK attach pt Q 0.675 [8]F
Z-line–T12 len L̃T12 0.0407 ℓMo H[66]
IgD rigid h-len L̃ IgD L̃M [61]
No IgP domains N IgP 45.1 [59]C
No PEVK residues NPEVK 695 [59]C
No IgD domains N IgD 22 [59]C

Active damping βPEVK
A 975

f M
o

ℓM
o

[8]F

Passive damping βPEVK
P 0.1

f M
o

ℓM
o

—
Length threshold ℓ̃Ms

1
2 ℓ̃

PE
s —

Act threshold A◦ 0.05 —
Step transition R 0.01 —

H. Titin’s force-length relations: f 1(ℓ̃ 1) & f 2(ℓ̃ 2)

f 1(ℓ̃ 1) slack len ℓ̃1S 0.137 ℓMo H[66]S,[8]F
f 1(ℓ̃ 1) toe len ℓ̃1toe 0.264 ℓMo H[66]S,[8]F
f 1(ℓ̃ 1) toe force f̃1

toe 0.163 fM
o H[66]S,[8]F

f 1(ℓ̃ 1) toe stiff k̃ 1
toe 2.55

f M
o

ℓM
o

H[66]S,[8]F
f 2(ℓ̃ 2) slack len ℓ̃2S 0.067 ℓMo H[66]S,[8]F
f 2(ℓ̃ 2) toe len ℓ̃2toe 0.129 ℓMo H[66]S,[8]F
f 2(ℓ̃ 2) toe force f̃2

toe 0.163fM
o H[66]S,[8]F

f 2(ℓ̃ 2) toe stiff k̃ 2
toe 5.25

f M
o

ℓM
o

H[66]S,[8]F
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