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Musculoskeletal models are made to reflect the capacities of the human body in general, and often a
specific subject in particular. It remains challenging to both model the musculoskeletal system and then
fit the modelled muscles to a specific human subject. We present a reduced muscle model, a planar mus-
culoskeletal model, and a fitting method that can be used to find a feasible set of active and passive mus-
cle parameters for a specific subject. At a minimum, the fitting method requires inverse dynamics data of
the subject, a scalar estimate of the peak activation reached during the movement, and a plausible initial
estimate for the strength and flexibility of that subject. While additional data can be used to result in a
more accurate fit, this data is not required for the method solve for a feasible fit. The minimal input
requirements of the proposed fitting method make it well suited for subjects who cannot undergo a max-
imum voluntary contraction trial, or for whom recording electromyographic data is not possible. To eval-
uate the model and fitting method we adjust the musculoskeletal model so that it can perform an
experimentally recorded stoop-lift of a 15 kg box.

� 2019 Published by Elsevier Ltd.
1. Introduction

Musculoskeletal models have been used to analyze and synthe-
size human motion for the purposes of movement science (Steele
et al., 2010; Delp et al., 2007; Arnold et al., 2013; Hiley et al.,
2015) and the design of assistive technologies (van den Bogert
et al., 2012; Millard et al., 2017). People come in different shapes
and sizes, and have varying levels of strength and flexibility. The
accuracy of a subject-specific model often depends on capturing
specific weaknesses (Sreenivasa et al., 2017; Steele et al., 2010),
flexibility (Millard et al., 2017), or strengths (King et al., 2006) of
the subject. While there are data and algorithms available to accu-
rately estimate the size, mass and inertia properties of a subject’s
entire body (De Leva, 1996; Jensen, 1986), it remains challenging
to model the musculature of the whole-body and to fit these mod-
els to a specific subject.

Many parts of the body are difficult to represent in a mathemat-
ical model. Lumped-parameter models treat muscle and tendon as
groups of massless cables that attach to, and wrap around, the
skeleton (Delp et al., 2007). By representing musculotendons as
massless cables it is possible to compute the kinematics of muscle
fibers and also the internal forces on the body such as bone-on-
bone contact forces (Scholz et al., 2014). A single long muscle can
be accurately modelled using a single cable. Muscles which are
bulky, or resemble sheets, are more challenging to model and often
need to be represented using many cables. This approach has been
used to develop anatomically detailed models of the legs (Arnold
et al., 2010), shoulder (van der Helm, 1997), and back
(Christophy et al., 2012; De Zee et al., 2007). Very few anatomically
detailed whole-body models have been developed (van den Bogert
et al., 2013; Damsgaard et al., 2006; Nakamura et al., 2005). While
this high level of anatomic detail is needed to simulate a surgical
intervention, or compute bone-on-bone contact forces, it is not
necessary for every investigation.

Once a musculoskeletal model has been made the challenging
task of fitting it to a specific subject begins. Many muscle model
formulations do not afford fitting due to parameter-space singular-
ities (Yeadon et al., 2006; Anderson et al., 2007), and state-space
discontinuities (Yeadon et al., 2006; Anderson et al., 2007;
Thelen, 2003) in the first and second derivatives. Unfortunately
these formulations are difficult to use with gradient-based opti-
mization methods (Wächter and Biegler, 2006; Gill et al., 2005).
Although singularity-free muscle model formulations exist
(Millard et al., 2013), identifying the parameters that best fit a
specific subject is still difficult.

Accurate subject-specific musculoskeletal models have been
constructed, though often with the use of equipment or experi-
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mental methodology that is not well suited for all subjects.
Dynamometers have been used to directly measure the active-
torque-angle, torque-velocity, passive-torque-angle curves of the
hip, knee and ankle joints in the sagittal plane across a wide variety
of subjects (Anderson et al., 2007); the spatial strength of the
shoulder, elbow, and wrist of an expert tennis player (Kentel
et al., 2011); and the musculature of the legs and arms of an elite
gymnast (Hiley et al., 2015). As it is not always possible to make
the extensive dynamometry measurements for each subject, opti-
mization has been used by King et al. (2009) to adapt the active
muscle characteristics of one elite athlete to another. While
dynamometers can directly measure the characteristics of the
modelled muscles, these properties can also be inferred when elec-
tromyographic (EMG) data is recorded along with trials in which a
maximum voluntary contraction (MVC) is reached. When EMG and
MVC data is used in combination with inverse dynamics data it is
possible to solve for the properties of the modelled muscles using
optimization (Lloyd and Besier, 2003; Sartori et al., 2012) or by
posing the fitting problem as an optimal-control problem (Falisse
et al., 2017). For many subjects, particularly patients, it is not pos-
sible to test them in a dynamometer nor perform MVC trials.

Here we focus on developing a reduced muscle model and pla-
nar whole-body musculoskeletal model that can be fit to a specific
subject and is well suited for motion synthesis. Section 2 begins
with a description of the reduced muscle model which includes a
number of fitting parameters so that it can be more easily adapted
to a specific subject. By using several data sets from the literature,
as described in Section 2.1, we have formed estimates for the active
and passive properties of 14 muscle groups consistent with a
young adult male subject. Our fitting method, described in Sec-
tion 2.2, extends the work of King et al. (2009) because both the
parallel elasticity of the muscle and its active properties are
adjusted during the fitting process. The fitting method, which
requires neither EMG data nor MVCs, has been developed to make
the minimal adjustment to the initial estimate for the muscle
parameters such that the torque demands of the recorded motion
are feasible. Section 2.3 describes how the method is evaluated by
using it to fit the active and passive properties of a musculoskeletal
model so that it is strong enough and flexible enough to emulate a
subject lifting a 15 kg box off the floor. In addition, the parameters
of the 14 muscle groups can be found in Appendix A along with
plots that illustrate the torque-angle and torque-velocity charac-
teristics of each muscle group. A detailed fitting example is pro-
vided in Appendix B which demonstrates how the fitting routine
can be applied to estimate the leg strength of a young clinical
patient who walks with crouch gait. To enable others to reproduce
and extend our work we have implemented the muscle models and
fitting method as part of the muscle package in RBDL,1 an open-
source software library for modeling and simulating multibody
systems.
2. Methods

The human body can be approximated as a rigid-body mecha-
nism governed by the differential-algebraic equations (DAEs)

MðqÞ€qþ cðq; _qÞ ¼ sþ GðqÞTk ð1Þ

gðqÞ ¼ 0 ð2Þ
where q; _q, and €q are the generalized positions, velocities, and
accelerations of the model; MðqÞ is the mass matrix, and cðq; _qÞ is
the vector of Coriolis and centripetal forces. Kinematic constraints
1 In the dev branch of Martin Felis’s open-source Rigid Body Dynamics Library
(RBDL) at https://bitbucket.org/rbdl/rbdl/src/default/ as part of the muscle addon.
described in the vector gðqÞ can be used to describe contact
between the body and hard objects (e.g. between the foot and the
ground), while the generalized forces these constraints apply to
the body are contained in the term GðqÞTk where GðqÞ is the Jaco-
bian of the constraint equations gðqÞ with respect to q, and k is
the vector of Lagrange multipliers which are proportional to the
constraint forces. In these equations the forces the muscles generate
and apply to the body are contained in s, the vector of generalized
forces.

The generalized forces that a muscle ultimately applies to the
body depend on how chemically activated the muscle is, the archi-
tectural properties of the muscle (Zajac, 1988; Millard et al., 2013),
how it attaches to, and wraps around, the bony geometry of the
skeleton (Delp et al., 2007; Scholz et al., 2014). The active tension
that a muscle is able to generate varies with its length (Gordon
et al., 1966), and lengthening rate (Hill, 1938) and is often
described using parametric curves: the active-force-length and
force-velocity curves. Though these curves vary from one muscle
to another, much of this variation is explained by the differences
in the architectural properties of the muscles: the cross sectional
area, the optimal fiber length ‘Mo , the pennation angle of the fiber,
and the tendon slack length. The architectural properties of muscle
varies widely from muscle-to-muscle (Arnold et al., 2010). When
muscle develops tension it pulls on the bones that it is attached
to, and exerts forces across the joints it spans. Muscles that span
multiple joints can apply complex, and counter-intuitive general-
ized forces to the body (Scholz et al., 2014). However, many mus-
cles and groups of muscles are mono-articular and span a single
joint in the body. For these mono-articular muscles the active-
force-length and force-velocity characteristics can be mapped
directly to torque-angle, and torque-angular-velocity characteris-
tics at the joint and used directly to compute the torque applied
to a specific joint.

Similar to the work of Forrester et al. (2011) we model the mus-
culature of the sagittal plane model as groups of agonist and antag-
onist muscle-torque-generators (MTGs). We extend the work of
Forrester et al. (2011) by including a parallel elastic element for
each MTG, and by modifying the characteristic curves of the MTGs
with additional parameters p (here p is composed of
kA; kP; kV ; sA;DP; sV , and ss terms), explained in the following text,
to fit the active and passive properties of the MTGs to data. The
normalized active torque developed by a single MTG is given by
the product of muscle activation a, the active-torque-angle multi-
plier t A, and the torque-velocity multiplier t V

s Mða; h;x;pÞ ¼ sss M
o a t Aðh; sA; kAÞt Vðx; sV ; kV Þ
�

þ t PEðh;DP; kPÞð1� b PE x
sVx M

max
Þ
�
: ð3Þ

The normalized torque developed by the parallel elastic element is
the product of the passive-torque-angle multiplier t PE and a nonlin-
ear damping term which we have added to suppress vibration. Here
we use boldface when referring to the characteristic curves of an
MTG (t A; t V, and t PE) and normal font when referring to a specific
scalar value of a curve (e.g. t A; t V, and t PE). The total torque devel-
oped by the MTG is the sum of the normalized active element and
the normalized parallel elastic element scaled by the maximum iso-
metric torque s M

o of the muscle. The fitting parameters kA; kV , and kP

are used to blend the curves between a nominal shape and a flat line
(Fig. 1A and B); the terms sA and sV scale the domain of the t A and
t V curves respectively (Fig. 1C and D); the terms kP and DP scale and
shift the t PE curve; and ss scales the maximum isometric torque of
the subject. These fitting parameters are used to transform the char-
acteristic curves

https://bitbucket.org/rbdl/rbdl/src/default/


Fig. 1. The torque developed by an MTG depends on the value of the active-torque-
angle (t A) curve, torque-velocity (t V) curve, passive-torque-angle (t PE) curve, and
activation. Each of these curves can be gradually flattened using a blending variable
(see kA; kP , and kV in panels A and B). In addition, the domain of the t A and t V curves
can be stretched using the sA and sV parameters; while the t PE curve can be shifted
using DP (see panels C and D).

Fig. 2. The human is modelled as a 16 segment 18 DoF planar mechanism. The
lumbar spine is treated as a pair of revolute joints at the location of L5/S1 disk and
the T12/L1 disk. Planar positions are indicated with x and z, angles with h.
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t Aðh; sA; kAÞ ¼ kA þ ð1� kAÞt Aððh� hoÞ=sA þ hoÞ ð4Þ
t Vðx; sV ; kV Þ ¼ kV þ ð1� kV Þt Vðx=sV Þ ð5Þ
t PEðh;DP; kPÞ ¼ ð1� kPÞt PEðh� DPÞ ð6Þ

without affecting the underlying equations used to describe the
curves.

Most of the parameters in p have a physical meaning: increas-
ing ss is equivalent to increasing the cross-sectional area of the
muscle or increasing the moment-arm of the joint is crosses;
increasing sA and sV is equivalent to increasing the optimal fiber
length of the muscle, or equivalently, reducing the moment-arm
of the joint the muscle crosses; changing kP and DP is equivalent
to altering the flexibility of the muscle. The additional parameters
kA and kV have been introduced to ensure that Eq. (3) can always
be solved for an activation a given any s M; h, and x. In addition,
the underlying geometry (5th-order Bézier curves) that defines
these curves is continuous to the second derivative making this
muscle model compatible with gradient-based optimization meth-
ods and thus well suited for motion synthesis. As a note, we have
chosen to use affine transformations to transform the curves rather
than changing the control points of the Bézier curves directly so
that the equations of the curves can be modified (e.g. in case a bet-
ter fit can be obtained with different curve equations) without
affecting the fitting routine.

2.1. Planar whole-body musculoskeletal model

The initial estimates for the parameters of the MTGs for a 16
segment 18 DoF sagittal plane model (Fig. 2) were made primarily
using dynamometry data collected by Jackson (2010), Anderson
et al. (2007) (from the 18–25 year old male data set), and Kentel
et al. (2011). The set of parameters for the hip, knee, and shoulder
come from the dynamometry data from Jackson (2010) of an elite
male gymnast. The parameters for the ankle come from Anderson
et al. (2007). To make the strength of the plantar flexors and dor-
siflexors consistent with the gymnast that Jackson studied, the
maximum isometric torque of the ankle musculature is scaled by
the ratio of the knee strength reported by Jackson (2010) to the
knee strength reported by Anderson et al. (2007). The characteris-
tics of the musculature that actuates the elbow and wrist come pri-
marily from the dynamometry data from Kentel et al. (2011) of an
elite tennis player. The ratio of the shoulder strength reported by
Jackson (2010) to that reported by Kentel et al. (2011) is used to
scale the strength of the elbow and wrist to make it consistent with
the gymnast.

Several data sources were required to establish the characteris-
tics of the MTGs that actuate the lumbar joints. The active-torque-
angle curve of the lumbar extensors is fitted to data from Raschke
and Chaffin (1996), while the passive-torque-angle curves comes
from Dolan et al. (1994). We assume that the gymnast is one stan-
dard deviation stronger than the average subject in the study by
Dolan et al. (1994) to arrive at the maximum isometric torque of
the lumbar extensors. The strength ratio of the lumbar extensors
to flexors published by Beimborn and Morrissey (1988) is used to
estimate the maximum isometric torque of the lumbar flexors.
The maximum angular velocity of the lumbar extensors and flexors
is arrived at by using architectural data on the respective moment-
arms (7.1 cm & 10.9 cm Németh and Ohlsén (1986)), average opti-
mal fiber lengths (8.08 cm & 29.9 cm Christophy et al. (2012)), and
by assuming that these fibers are predominantly slow-twitch with
a maximum contraction velocity of 7:02‘Mo =s Ranatunga (1984). Lit-
erature defining the active and passive-torque angle curves for the
lumbar flexors (abdominal muscles) could not be found. The lum-
bar extensors and flexors actuate the two revolute joints (Fig. 2)
one representing the L5/S1 joint and the other the T12/L1 joint
(Fig. 2). Since the curves we have defined for the lumbar extensors



Fig. 3. Inverse kinematics is used to make the model track the positions of the
human subject. The subject performed a stoop-lift to pick up the box. At the deepest
part of the lift the subject bent his knees but maintained a straight back.
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and flexors apply to the lumbar spine as a whole, we scale the
angle and angular velocity of the lumbar joints by two when eval-
uating evaluating the torque developed by the lumbar extensors
and flexors.

2.2. Quadratic program problem formulation

The fitting algorithm adjusts the parameters of the MTGs so that
they can produce the same joint torques as the subject with activa-
tions that range between 0 and amax (where amax 6 1) such that the
normalized passive-torque-angle multiplier is less than t PE

max. Prior
to fitting the MTGs we assume that the multibody model matches
the anthropometry of the subject and the recorded motion and
forces have been transformed into a time series of generalized
positions qðtÞ, velocities _qðtÞ, and forces sðtÞ using inverse dynam-
ics. Further we assume that the strength of the entire set of the
MTGs has been scaled roughly to fit the subject given their age,
size, and gender. The quadratic problem (QP) described below will
only make adjustments to make the MTGs stronger, or more flexi-
ble, so that the observed motion can be executed by the model. We
have elected to formulate the QP so that it only makes the MTGs
stronger or more flexible so that this routine can be used on
recordings of sub-maximal efforts without unduly adjusting MTGs
that are not, due to the movement, very active or stretched. As a
consequence, if the subject is at their strength or flexibility limits
during the trial, the reference MTGs should adjusted so that they
are both weaker and stiffer than the subject prior to using the fit-
ting method.

To fit the parameters of the ith MTG we first extract s M
exp, the part

of s which has the same sign as the direction, u M
i , as the MTG

s M
expðtÞ ¼

siðtÞ if siðtÞu M
i > 0

0 otherwise

�
ð7Þ

where u M
i is either �1 or 1. Here we treat a subset of the parame-

ters p as optimization variables

x ¼ ðsA; sV ; DP ; kP ; ssÞ: ð8Þ
We have excluded kA and kV from the fitting process because if
these parameters are set to large values the active-torque-angle
and torque-velocity curves are effectively flattened: this is unrealis-
tic and undesirable. Using the weighting matrix W we search for
parameters that are as close as possible to the default values x�

min
x

ðx� x�ÞTWðx� x�Þ ð9Þ

and satisfy 3 constraints at each of the j time points recorded in the
experiment: that s M

expðtÞ can be generated with an activation no
greater than amax

ðs M
i ðamax; hðtjÞ; xðtjÞ; xÞ � s M

expðtjÞÞu M
i P 0; ð10Þ

that the minimum activation of the muscle is greater than or equal
to 0

ðs M
expðtjÞ � s M

i ð0; hðtjÞ;xðtjÞ; xÞÞu M
i P 0; ð11Þ

and that the passive element does not develop more than t PE
max

ðt PE
max � t PEhðtjÞ; DP ; kPÞu M

i P 0: ð12Þ
The initial optimization vector is set to x� ¼ ð1;1;0;0;1Þ so that the
underlying curves match their default values. When this quadratic
program (QP) is solved the parameters of the MTG will have been
systematically, and minimally adjusted so that the MTG can repro-
duce the observed loading pattern. Note that as stated, Eq. (7)
assumes that agonist-antagonist pairs of MTGs develop no co-
contraction. While the parameters kA and kV are not modified, these
parameters have been set to
ffiffiffi
�4

p
(where � ¼ 2:22� 10�16) so that

the Eq. (3) can be solved for activation (given s M; h, and x) without
risk of a numerical singularity. If some level of co-contraction is
known, perhaps from EMG recordings of muscle activity, it can be
included in the fitting process by modifying Eq. (7).

2.3. Evaluation procedure

To evaluate the fitting routine we used it to fit the MTG param-
eters described in Section 2 to data of a 35-year old male (mass
81.7 kg, height 1.72 m) stooping (Fig. 3) to pick up a 15 kg box
off the floor. We used previously recorded kinematic and force
plate data (Millard et al., 2017) and processed it to yield a time ser-
ies of generalized positions, velocities, and forces. The model fits
the subject well as the residual forces and moments of the inverse
dynamics analysis are low: 5.4 ± 3.4 N and 3:6� 2:5 Nm, with
short-lived peaks of 19:3 N and 11:6 Nm when the box is being
picked up.

We first assess the default MTG parameters for feasibility by
using Eq. (3) and the inverse dynamics data to arrive at an activa-
tion time series for each MTG. The value for s M in Eq. (3) is not
directly taken from the inverse dynamics data, but is first broken
up into flexion and extension components using Eq. (7). We set
kA and kV to

ffiffiffi
�4

p
so that Eq. (3) can be solved for a given values

for s M, h, and x without numerical singularity. The remaining fit-
ting variables are left at the default values of x�. The resulting val-
ues of a have a direct physical interpretation: a < 0 means that the
parallel elastic element of the MTG is too stiff, a > 1 means that the
active component of the MTG is too weak, and 0 6 a 6 1 means
that the parameters of the MTG are feasible.

We next use the fitting routine described in Section 2.2 to adjust
the MTGs so that they can produce the same torques as the sub-
ject’s musculature during the box lift. We use Eq. (7) to evaluate
the torque s M

expðtÞ and assume that there is no co-contraction
between pairs of agonist-antagonist MTGs. While choosing plausi-
ble values for amax and t PE

max is relatively simple, estimating these
parameters accurately for a given subject and task is challenging.

The values for amax for each muscle in a given task can be accu-
rately set if the experimental recordings include EMG data from
the task and from a series of MVCs for each muscle of interest.
When EMG recordings from the task and an MVC are available,
the value of amax for a given muscle is simply the peak value of
the filtered rectified EMG signal normalized with respect to the



Fig. 4. The parallel element of the default hip extensors are stiff enough that the
model cannot reach a hip flexion greater than 81:4� without breaking the constraint
of Eq. (11) (panel A). After fitting the model is able to complete the entire motion
(panel B), which includes a maximum hip flexion angle of 121� , while satisfying the
constraints described in Eqs. (10)–(12).

Fig. 5. Prior to fitting the hip extensors are too inflexible and weak to lift the box off
the ground (panels A & B). After fitting the feasible region of the muscle has been
expanded so that it is strong and flexible enough to complete the observed motion.
The region between the dashed and solid grey lines in panels A and C are feasible
but only during an active eccentric contraction. Only the right hip extensor MTG is
shown, since the left is nearly identical.
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peak value observed during the MVC (Winter, 2009). Unfortunately
we do not have EMG recordings from the subject for the task, nor
from MVC trials. For the purposes of evaluating the fitting method
we set amax to one: any MTG that was previously too weak will,
after fitting, be just strong enough to complete the task.

While the value assigned to amax will always affect the fitting
result, the value assigned to t PE

max may not. The constraint of Eq.
(11) that the minimum activation is zero or greater may instead
be the limiting factor: when the passive forces of the muscles
exceed the s M

expðtÞ, the constraint in Eq. (11) will not be satisfied,
and as a consequence the solver will adjust the properties of the
passive curve. Only motions in which large observed torques
s M
expðtÞ happened to be accompanied by large passive torques will

be affected by the constraint of Eq. (12).
Here we will set t PE

max not to restrict the values of passive forces
to subject-specific values, but instead to restrict the upper-bound
on passive forces to a reasonable value. Although we are unaware
of data which describes the typical tolerance for passive forces, we
estimate this upper-bound as being similar to the amount of force
tolerated during in-vivo maximally active eccentric contractions:
subjects often limit the amount of normalized force (scaled by
one divided by maximum active isometric force) to around 1.4
(Yeadon et al., 2006), presumably to avoid injury. In-vitro experi-
ments studying active eccentric contractions (Herzog and
Leonard, 2002) show that muscle can tolerate higher forces with-
out causing injury. Thus it is possible that a specific subject might
be able to tolerate normalized passive forces greater than 1.4, and
that tolerance to high passive forces may vary from subject-to-
subject.

To assess the fitted MTGs we first check that the required s M
exp

can be generated with activations between 0 and amax and a
passive-torque-angle multiplier of less than t PE

max. To assess the
quality of the fit using a two dimensional figure we project the tor-
que profile onto the h-s M plane to see if the torque demand of the
task falls within the isometric envelope defined by the active-
torque-angle and passive-torque-angle curves. Next, we project
the demanded active torque

s M
A ¼ s M

exp � t PEðh;DP; kPÞ 1� b PE x
sVx M

max

� �
ð13Þ

onto the x-s M
A plane to see if the active torque demanded by the

task is limited by the torque-velocity curve of the MTG. It is neces-
sary to define s M

A to assess whether s M
exp can be met because only

active torque is affected by the limitations of the torque-velocity
curve.

We use IPOPT (Wächter and Biegler, 2006) to solve the QP
described in Section 2.2 for each of the 30 MTGs using the inverse
dynamics data from the box-lift. The QP for each MTG has 5 vari-
ables and 588 constraints because there are 196 sample points in
the recorded motion. We have set all elements of the diagonal of
the weighting matrix W to be 1.

3. Results

Prior to fitting the parallel element of the hip extensors is too
stiff to allow the model to reach the box with its hands (Fig. 4A):
hip flexion angles greater than 81:4� yield negative activations
for the hip extensors. The active torque-angle and torque-
velocity characteristics of the hip extensor MTG are also too weak
to meet the torque demands of the lift in the moments after the
box is lifted-off the ground (Fig. 5A and B).

After fitting, the hip extensors are flexible enough to allow the
model to grip the box (Fig. 4B) and have sufficient strength to lift
the 15 kg box (Fig. 5C & D) with activations between 0� amax
(0� 1). The QP solver made modest adjustments to all of the fitting
parameters except for kP which has been changed substantially
(see Table 1). Due to the symmetry of the recorded motion the
parameters for the right and left hip extensors agree to 3 signifi-
cant figures.

The hip extensors require an activation of 1 during the lift when
active-torque developed by the MTG hits the boundary of torque-



Table 1
Default and fitted parameters of the right hip extensor.

x sA sV DP kP ss

Default 1 1 0 0 1
Fitted 1.03 1.12 �4:18� 0.92 1.12
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velocity curve (Fig. 5D). The passive-torque-angle multiplier does
not approach t PE

max. The other MTGs of the musculoskeletal model
are feasible for the task and remained unchanged. The entire fitting
process required a few seconds of processing on a conventional
laptop using an Intel(R) central processing unit (i7-3630QM) oper-
ating at 2:40 GHz.

4. Discussion

Musculoskeletal models are being used to predict the motion
and muscle forces of human subjects for the purposes of research
and device design. We have extended the work of Forrester et al.
(2011) by adding a parallel-elastic element to the MTG, and by
making the underlying equations compatible with gradient-based
optimization methods. We have extended the work of King et al.
(2009) by developing a method to fit both the active and passive
properties of the MTGs to a specific subject. To demonstrate the
utility of the MTGs and fitting method we have created a planar
whole-body musculoskeletal model using dynamometry data from
the literature and have fitted it so that a measured motion can be
executed by the model.

The parameters of the MTGs are based on in-vivo dynamometry
measurements from several young men (Jackson, 2010; Kentel
et al., 2011; Anderson et al., 2007; Dolan et al., 1994; Raschke
and Chaffin, 1996). While we are grateful for this data, it is far from
complete. Remarkably few studies make measurements across
multiple joints of a single subject, measure flexibility, publish
raw measurement data, or consider subjects other than young
men. We hope and encourage other research groups with these
unique facilities and experimental skills to measure multiple joints
within a single subject, and to collect data from a broader range of
subjects.

The simplifications of the MTG muscle model formulation have
necessarily come at a cost: individual fiber kinematics are not rep-
resented; bone-on-bone contact forces cannot be calculated; ten-
don strains are not simulated; the coupling between joints that
biarticular muscles introduce is not represented. Despite these
simplifications this model is useful for the simulation of many
everyday activities, particularly to support the design of wearable
robotic systems (Millard et al., 2017) and the tuning of orthoses
(Sreenivasa et al., 2017). In the future we plan on extending the
musculoskeletal model and fitting method to include line-type
muscles that span multiple joints and muscles with elastic
tendons.
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Appendix A. Gymnast MTG characteristics

This appendix contains the parameters (Table A.2) and plots
(Fig. A.6) that define the 14 MTGs that are described in Section 2.1.
All of the curves in this dataset are implemented as 5th-order
Bézier splines which are continuous to the 2nd derivative through-
out their entire domain and closely follow an underlying function.
The active-torque-angle splines follow a Gaussian function cen-
tered on hAo and with a standard deviation of hAw, as in Jackson
(2010). The passive-torque-angle splines pass through ðhPE0 ; 0Þ and
ðhPE1 ; soÞ and have been shaped to follow the exponential curve used
by Jackson (2010). To construct the normalized torque-velocity
curve, Hill’s hyperbola is first constructed such that it passes
through ð12xC

max; t
Vð12xC

maxÞÞ, which allows a fast-twitch or a slow-
twitch torque-velocity curve to be easily constructed. The Bézier
spline is then fitted to the hyperbola between an angular velocity
of 0 and 0:9x M

max. Between 0:9x M
max and x M

max the curve is smoothly
brought to a value and slope of zero. The eccentric side of the curve
is formed such that t VðxE

maxÞ is reached at a maximum angular
velocity in the eccentric direction with a slope of zero. Note that
neither the fitting method nor the muscle model have a depen-
dency on the shape of these curves: if it proves more appropriate
to use other curves, such as an asymmetric active-torque-angle
curve, this change can be made without affecting the fitting
method.

The parameters of the various MTG listed in Table A.2 vary
widely from joint-to-joint and from agonist-antagonist: the lum-
bar extensors are by far the strongest and slowest MTG while the
MTG that actuates the wrist in radial deviation are the fastest
and weakest. These differences are most clearly observed by look-
ing at plots of the torque-angle and torque-angular velocity char-
acteristics for each of these joints (Fig. A.6).
Appendix B. Example application

This appendix contains a detailed example in which the default
MTGs, the fitting routine, motion capture data, and force plate data
are used to estimate the lower- and upper-bounds of the leg
strength of a child who walks with crouch-gait. We have chosen
this subject because he (in contrast to subject used in the box-
lifting task) is far weaker than the set of MTGs, and as such, the
MTGs need to be pre-weaked prior to using the fitting routine. In
addition, this subject also serves as a good example because nei-
ther MVCs nor EMG data could be recorded from this clinical
patient: conventional EMG-based fitting methods (Lloyd and
Besier, 2003; Sartori et al., 2012) cannot be applied to develop a
model of this subject.

As mentioned in Section 2.2, the fitting routine can only
strengthen the MTG or make it more flexible. While this means
the routine can be applied to data collected from a submaximal
effort, it also means that the maximum isometric torque of each
MTG needs to be slightly weaker than the subject prior to fitting
if any adjustment is to be made. As an example, we fit the hip,
knee, and ankle MTGs of a sagittal-plane gait model to a 7-year
old child who walks with crouch-gait using the data and model
of Sreenivasa et al. (2017). Please see the supplementary material
for this article to obtain a copy of the script and data required to
do the fitting described in this example.

The supplementary data from Sreenivasa et al. (2017) contains
one walking trial, 3053176.c3d, in which ground forces are individ-
ually recorded under each foot. We prepared the data for fitting by
performing an inverse-kinematics analysis, smoothed the general-

ized positions using a dual-pass 2nd-order low-pass Butterworth
filter (10 Hz), used the central-difference method to numerically



Table A.2
Parameters of the characteristic curves of the MTGs. Light grey cells indicate parameters which could not be found in the
literature and have been estimated. Light blue cells are passive parameters that have been added to prevent a joint from hyper-
extending. For brevity we will indicate the source of data in each case using the leading letter of the first author’s name: ‘A’ for
Anderson et al. (2007), ‘B’ for Beimborn and Morrissey (1988), ‘D’ for Dolan et al. (1994), ‘J’ for Jackson (2010), ‘K’ for Kentel et al.
(2011) and ‘R’ for Raschke and Chaffin (1996).
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calculate generalized velocities and accelerations, and finally per-
formed an inverse-dynamics analysis to solve for the resulting gen-
eralized forces. Our interval of fitting has been trimmed to include
only times in which the feet are in contact with the force-plate or
are in swing. The residual forces within this interval are relatively
low (f X ¼ 0:91� 10:9; f Y ¼ 13:5� 9:59; sZ ¼ �1:56� 5:23).

Since we have limited experimental data from this subject, we
will establish lower- and upper-bounds on the strength of the
musculature at the hip, knee and ankle. The lower-bound on the
subject’s strength is estimated using the inverse dynamics data
and the fitting routine assuming that the hip, knee, ankle extensors
reach maximum activation during the walking trial. The upper-
bound on the subject’s strength is estimated using dynamometry
data (Eek et al., 2006) collected from typically developing children
of a similar age and size. We are using the leg strength from a typ-
ically developing child as an upper-bound on the subject’s strength
because children who walk with crouch-gait are weak compared to
their peers (Wiley and Damiano, 1998).

To solve for the lower-bound on the strength of the leg exten-
sors, we pre-weaken these MTGs from the default value (to 80%
of the peak moment) so that the fitting routine is forced to adjust
these MTGs to fit the data (upper-panel of column s M�

o in
Table B.3). The default values for all remaining parameters of the
extensors are left unchanged. After running the fitting routine on
the leg extensors, it is clear that the pre-weakening was adequate
as ss > 1 in all cases (upper-half of column ss in Table B.3). The fit-
ting routine also made adjustments to the sA and sV parameters
and increased the flexibility of the ankle extensors and left hip
extensors (upper-half of columns sA; sV , and kP in Table B.3). The
large change of kP for the ankle extensors have been made because
of the large dorsi-flexion angle that the subject uses during stance
(Fig. B.7) and also because the initial passive-torque-angle curve
would have required a very large offset angle to achieve the same
result.

To estimate the lower-bound on the strength of the hip,
knee, and ankle flexors, we assume that a submaximal activa-
tion is achieved during the recorded walking trial. Rather than
estimate the level of submaximal activation, we instead esti-
mate s M

o of the flexors and use the fitting routine to check that
these parameters are feasible for the subject’s gait. We estimate
the initial s M

o of the flexors by scaling the fitted extensor s M
o

values by the flexor-to-extensor torque ratios at the hip
(0.702), knee (0.533) and ankle (0.347) from the data set of
Anderson et al. (2007) for healthy young male subjects
(lower-half of column s M�

o in Table B.3). We have elected to
use the flexor-to-extensor ratios from Anderson et al. (2007)
because these recordings have been made from typical subjects
rather than from an athlete (Jackson, 2010). The results
returned by the fitting routine show that modest adjustments
have been made to the right and left hip flexors, and the right
ankle flexor (lower-half of Table B.3).

We estimate the upper-bound of the subject’s strength using
the hand-held isometric dynamometry data (Eek et al., 2006) for
a control subject of the same age, similar weight (1.5 kg heavier),
and similar height (5.4 cm taller) to the subject. We estimate s M

o

by scaling the hip, knee, and ankle extensor torque measurements
of Eek et al. (2006) by t A (evaluated using the corresponding
active-torque-angle-curve) since these recordings are isometric
and are in a range where there are no passive forces. As before,
the strength of the hip knee and ankle flexors are computed by
making use of the same flexor-to-extensor ratios that we used
for the subject. The control is far stronger than the lower-bound
we established using the subject’s data with a pronounced differ-
ence at the plantarflexors (Table B.4).

Since crouch-gait is known to be caused by weak plantar flexors
(Elder et al., 2003), we expect the true value of the subject’s s M

o at
the ankle extensors to be close to the lower-bound. In contrast, we
expect the strength of the hip and knee musculature to lie between
the lower- and upper-bounds (Wiley and Damiano, 1998). Even
though the data available on the subject is sparse, the fitting rou-
tine has allowed us to establish a feasible lower-bound on the
strength of the subject’s legs.



Fig. A.6. The torque-angle and torque-velocity characteristics for agonist and antagonist muscles of the hip, knee, ankle, lumbar, shoulder, elbow and wrist joints. These
curves have, with few exceptions, been extracted from data in the literature and modified to ensure continuity to the second derivative. Please see the text of Section 2.1 and
the supplementary material for details.
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Table B.3
Pre-weakened (s M�

o ) and fitted hip, knee, and ankle MTG parameters. Parameters
highlighted in light-grey have been modified by the fitting routine.

Fig. B.7. Prior to fitting, the weakened left plantarflexor is too weak and stiff to
walk as the subject did (panels A & B). After fitting the plantarflexor has been made
slightly more flexible and stronger so that the inverse dynamics data is now feasible
for the left plantarflexor (panels C & D). Note that the value for s M

A is calculated
using Eq. (13) described in Section 2.3.

Table B.4
A comparison of the lower-bound (LB) and upper-bound (UB) estimates of the
maximum-isometric-torque at the hip, knee, and ankle of the subject. The lower-
bound estimate comes from applying the fitting routine to inverse dynamics data
from subject while the upper-bound estimate comes from hand-held dynamometry
data from a control subject of the same age and a similar size (Eek et al., 2006).

s M
o

LB UB

Right Left

Hip Ext. 13.3 19.5 52.2
Knee Ext. 14.4 11.7 64.6
Ankle Ext. 12.9 11.2 25.5

Hip Flex. 16.8 24.8 36.6
Knee Flex. 9.00 8.10 34.4
Ankle Flex. 5.22 5.08 8.85
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This example illustrates how the fitting routine can be used as a
tool to estimate the strength and flexibility of a subject given a
sparse amount of data. It should also be clear from the assumptions
that we have had to make that the quality of the fitting can be
improved if additional data is available. Additional data can be
used in three ways: to improve the accuracy of the estimate of
the maximum activation reached during a trial, to more accurately
estimate parameters that are not adjusted by the fitting routine
(such as hAo ; t

VðxE
maxÞ), and to improve the initial guess of the

parameters of the MTGs parameters prior to fitting. We hope that
the fitting method and MTGs that we have developed will help
others make more accurate subject-specific models given the data
at hand and in the literature.

Appendix C. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at https://doi.org/10.1016/j.jbiomech.2019.04.
004.
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