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Abstract
Although wearable robotic systems are designed to reduce the risk of low back injury, it is unclear how effective
assistance is compared to improvements in lifting technique. We use a two factor block study design to simulate
how effective exoskeleton assistance and technical improvements are at reducing the risk of low back injury when
compared to a typical adult lifting a box. The effects of assistance are examined by simulating two different models:
a model of just the human participant, and a model of the human participant wearing the SPEXOR exoskeleton.
The effects of lifting technique are investigated by formulating two different types of optimal control problems
(OCPs): a least-squares problem (LSQ) which tracks the human participant’s lifting technique; and a minimization
problem where the model is free to use a different movement. Different lifting techniques are considered using three
different cost functions related to risk factors for low-back injury: cumulative-low-back-load (CLBL), peak-low-
back-load (PLBL), and a combination of both CLBL and PLBL (HYB). The results of our simulations indicate that
an exoskeleton alone can make modest reductions in both CLBL and PLBL. In contrast, technical improvements
alone are effective at reducing CLBL, but not PLBL. The largest reductions in both CLBL and PLBL occur when
both an exoskeleton and technical improvements are used. While all three of the lifting technique cost functions
reduce both CLBL and PLBL, the HYB cost function offers the most balanced reduction in both CLBL and PLBL.

Impact Statement
Injury to the low back is common among workers, painful to individuals, and costly to society as a whole.
Two risk factors associated with low-back injury are the cumulative low back load (CLBL), and the peak
low back load (PLBL). In this work, we use simulation and a two factor block study design to examine
how much the risk of low-back injury is affected by an exoskeleton and improvements to lifting technique.
Our simulations indicate that training alone can substantially reduce CLBL, but only modestly reduce PLBL.
When both training and an assistive exoskeleton are used, our simulations indicate that both risk factors can
be substantially reduced.

1. Introduction
Low-back pain (LBP) accounts for approximately 15.5% of worker absenteeism in industry across
Europe and North America (Wynne-Jones et al., 2014), while being globally the first ranked disorder
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for years lived with disability (Buchbinder et al. 2013). Assistive exoskeletons and more specifically,
back-support exoskeletons, are being developed for the prevention of LBP by alleviating low back
loads. There exists a variety of passive exoskeletons such as Laevo (Laevo, 2018; Hensel and Keil,
2019), PLAD (Abdoli et al., 2006), SuitX (Kazerooni et al., 2019), Moment Restoring Device (Wehner
et al., 2010) and BNDR (Ulrey and Fathallah, 2013). There are a similar number of active exoskeletons
such as the Robomate (Toxiri et al., 2018, Huysamen et al., 2018), WSAD (Luo and Yu, 2013) and the
Muscle Suit (Muramatsu et al., 2014). In many cases, these devices manage to lower joint torques and
muscle activity (de Looze et al. 2016). Although many exoskeletons are focused at reducing the risk
of low-back injury, it is not clear how effective these devices are in comparison to simply improving
lifting technique.

Repetitive lifting and bending tasks contribute most to LBP (Coenen et al. 2013). Repetitive lifting
causes the accumulation of microdamage to the tissue through cumulative low-back loads (CLBL)
(Brereton and McGill, 1999). Apart from CLBL, instantaneous damage can be caused to the lower back
by peak low-back loads (PLBL). Both of these quantities are typically highest at the L5/S1 lumbosacral
joint (Coenen et al., 2014). Risk factors based on the L5/S1 extension moment (such as CLBL and
PLBL) are both easy to calculate and capture the risk associated with many different specific injuries
because the loads applied to the ligaments, disks, vertebrae, and muscles of the back scale with the
L5/S1 extension moment (van Dieen and Kingma, 2005).

Even though there has been a lot of modelling and simulation work done to learn more about back
injury (Christophy et al., 2012, McGill et al., 1987, de Zee et al., 2007 ), much of this work is based on
inverse-dynamics data taken from real people lifting, and therefore cannot predict how someone might
use a novel exoskeleton. The few optimal control studies that have been done to predict new lifting
motions (Xiang et al., 2020), do not combine human and exoskeleton models. The limited amount of
work that includes an exoskeleton (Harant et al., 2019, Millard et al., 2017), however, does not consider
the effects of training, nor risk factors related to low-back injury. Additionally, no simulation work has
been found that examines the effect of lifting technique on the risk of low-back injury.

In this work, we employ optimal control and multi-body dynamics to model, simulate, and predict
the movements and forces needed for a person to lift a 10 kg box from the floor. Using motion capture
data of an experimental participant lifting a 10 kg box from the floor, we recreate the motion using
a least-squares fitting approach. We then add the exoskeleton model and re-evaluate the least-squares
problem in order to quantify the effect of adding an exoskeleton without changing the original motion.
Next, we examine how much CLBL and PLBL can be reduced through improved lifting technique, with
the use of an exoskeleton and lastly with the use of an exoskeleton plus improved lifting technique. In
this study, we use a movement between a stoop and a squat (stoop-squat) since this technique is most
often used when picking up objects from the ground (Burgess-Limerick et al., 1995). We extend our
previous work (Marinou and Mombaur, 2020) by simulating the effects of two different conditions
in our simulations: lifting using experimentally measured technique vs. lifting with optimal lifting
technique; and lifting without any aids vs. lifting with the assistance of an exoskeleton. We evaluate
three different optimal lifting techniques that minimize three different risk factors for lifting: (a) CLBL,
(b) PLBL, and a weighted sum of both CLBL and PLBL (HYB). We evaluate the effects of assistance
by simulating the lift using two different models: a model of our human participant, and a model of our
human participant wearing the SPEXOR exoskeleton. We hypothesize that both the lifting technique
alone and with the exoskeleton will reduce CLBL and PLBL, but that the exoskeleton will provide the
greatest reduction in injury risk.

2. Methods
We simulate eight different stoop-squat lifts of a 10 kg box in the sagittal plane using a planar multibody
model. We create a reference solution using a least-squares fitting problem (Fig. 1 (B)), where we
track the motion of one participant from the recorded motion capture data. To examine how much an



Wearable Technologies 3

Figure 1. Two optimization methods: A - prediction through optimization of human-only and human-with-exoskeleton stoop-squat lifts, B -
dynamic reconstruction of human-recorded stoop-squat lifts for both human-only and human-with-exoskeleton OCPs based only on human
capture data.

exoskeleton reduces the risk of injury using the same lifting technique we solve the same least-squares
fitting problem but using a model that includes the exoskeleton. The remaining six of the lifts are
completely synthesized and rely on no experimental data (Fig. 1 (A)). To examine the effect of lifting
technique we create three different cost functions: one for minimizing CLBL, one for minimizing PLBL
and lastly a hybrid function minimizing both CLBL and PLBL. The following sections describe our
modeling procedure, the optimal control problem (OCP) formulation, and the evaluation of the cost
functions employed.

2.1. Experimental Data
A male participant of 76.5 kg mass and height of 1.69 m performed a stoop-squat lift of a 10 kg box.
Kinematics of the body segments and the box were recorded by recording the position of markers on the
participant and the box, using an OptoTrack system (Northern Digital Inc., Canada). Ground reaction
forces were collected using Kistler force plates (model 9260AA6 from Kistler, Winterthur, Switzer-
land). The experiment was conducted at the University of Primorska in Slovenia and approved by the
national medical ethics committee of the Republic of Slovenia (0120-199/2016-2, KME 93/04/16) with
written and informed consent from the participant. The data was collected for the human alone, without
the aid of the exoskeleton.
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2.2. Dynamics
We have modelled the human body in the sagittal plane using an 11 segment model with 13 degree-
of-freedom (DOF), the exoskeleton with 6 segments and 8 DOF , and the box with one segment and 3
DOF. Accordingly, the generalized position vector contains 3 entries for the box, and 13 entries for the
human model. When the exoskeleton is included, an 8 additional entries are added for the exoskeleton
model. The geometry, masses, and inertias of the segments in the human model have been scaled using
de Leva’s 1996 anthropomorphic tables and the participant’s height and mass. The mass and geometry
properties of the box and the exoskeleton have been set to match the physical box used in the experiment
and the SPEXOR exoskeleton (Naf et al., 2018).

The system is modeled as a constrained multibody system,

" (q) ¥q + 2(q, ¤q) = g + � (q)) _ (1)

where � is the Jacobian of the kinematic constraint equations

6(q, ¤q) = 0, (2)

and q, ¤q and ¥q are the generalized vectors for position, velocity and acceleration of the model’s seg-
ments. " (q) is the mass matrix of the system and 2(q, ¤q) is the vector of Coriolis and centripetal
forces. Equation 2 describes the kinematic constraints which consists of the coupling equations for the
lumbar spine (Christophy et al., 2012), the contact constraints between the foot and the ground, the
contact constraints between the hands and the box, and the constraints that attach the exoskeleton to
the human body model. The entries contained in � (q)) _ are the generalized forces imposed by these
constraints, where � (q) is the Jacobian of the constraint equations 6(q) with respect to q, and _ is a
vector of Lagrange multipliers. Finally, g is the vector of generalized force applied to the system, which
consists of the joint torques developed at the internal joints of the human model and the hip actuator of
the exoskeleton (Fig. 2).

In describing the interaction between the human and the exoskeleton, we simulate the exoskeleton
as an external rigid body which is attached to the human through 8 kinematic constraints defined at
three attachment points: the thigh, pelvis and upper trunk. The thigh and upper trunk modules of the
exoskeleton are attached to the human model using weld constraints. A point constraint is used to attach
the pelvis module of the exoskeleton to the pelvis, which permits rotation between these two bodies.
Weld constraints are applied between the human feet and the ground, as well as the hands and the box
during the contact and lifting phases. To simulate this constrained system forward in time we use the
Rigid Body Dynamics Library (RBDL) of Felis 2017.

2.3. Lumbar Spine Model
We have included an articulated and coupled model of the lumbar spine similar to Christophy et al.
2012 to ensure that the bending movements of the model are as accurate as possible. In this model, the
lumbar spine is described as 5 vertebrae attached serially using revolute joints. The revolute joints of
the lumbar back are located at the average center-of-rotation of each vertebra as reported by Pearcy and
Bogduk 1988. We have fit the data of Pearcy and Bogduk 1988 to the high resolution vertebral meshes
of Mitsuhashi et al. 2009, and scaled the model to fit our participant. All internal joints of the human
model are torque-driven.

Although the lumbar spine has five joints, we have coupled those joints with four constraint
equations so that the entire lumbar spine has only one degree of freedom in the sagittal plane. The
constraint equations have been formulated so that the resulting coordinated motion is consistent with
the coordinated bending of the lower back as measured by Wong et al. 2006. Wong et al. 2006 observed
that the flexion of each joint, U8 , scales linearly with the total lumbar flexion angle, U! =

∑8=5
1 U8 , such

that U8 = n8UL, where U5 corresponds to the angle from the S1 to L5, and U4 corresponds to the angle
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from L5 to L4, etc. The coefficients n5, . . . , n1 that best fit the 30 participants in Wong et al.’s 2006
study are 0.255, 0.231, 0.204, 0.185, and 0.125. Similar to Christophy et al. 2012, we use the linear
relationship between U8 and UL to form the velocity-level constraint

28 :
¤U8
n8
− ¤U8+1

n8+1
= 0 (3)

between neighboring pairs of joints (Fig. 2). Prior to simulation, each lumbar joint angle is biased so
that a lumbar flexion angle of zero, UL = 0, poses the lumbar spine to match the resting position (shown
in Fig. 2) of the participant from Mitsuhashi et al. 2009. In this case, the bias angles are 2.1◦, 8.8◦,
10.6◦, 12.9◦, and 11.3◦ of extension for the joints from L5/S1 joint to the L1/L2 joint, respectively. As
with other kinematic constraints in this model, index reduction is used to transform the original set of
differential algebraic equations of index 3 to a system of differential algebraic equations of index 1.
During the simulation, the constraint error is reduced using the stabilization of Baumgarte 1972.

2.4. Exoskeleton Model
We model the SPEXOR exoskeleton using an 8 DOF mechanism composed of 6 segments and a total
mass of 9.12 kg. Unique to this exoskeleton are three carbon fibre rods (4.7 mm in diameter, with a
Young’s modulus of 166 GPa) producing counter torques about the lumbar in order to support lifting
motions. Additionally, a hydraulic actuator (with a maximum output torque of 25 Nm) is placed at the
exoskeleton hip joints, which feature a misalignment compensation mechanism (Fig. 2). The exoskele-
ton further includes a trunk and pelvis module which are connected by carbon fibre beams, and two
thigh modules that are connected to the pelvis interface by a rigid metal rod on each side. The beams
are rigidly fixed to the pelvis module and pass through the torso module via a series of rollers.

We model the path traced by the slender beams using a cubic spline. As has been shown by Holla-
day (1957) a cubic spline traces a path that minimizes total curvature, which is the same path traced
by a slender elastic beam. At every instant in time a cubic spline F(D) is fitted to match the end condi-
tions imposed by the rigid pelvis mount and the rollers (Fig. 2). We describe the spline in normalized
coordinates

D =
I

!
(4)

along the undeformed path of the beam, and by deflections

F(D) = A + BD + CD2 + DD3 (5)

perpendicular to D. Here ! is the distance between the pelvis mount and the rollers projected onto
the beam’s axis that is fixed to the pelvis module. The coefficients in Eqn. 5 are evaluated using the
boundary conditions imposed by the rigid pelvis mount

F(0) = 3 F(0)
3 D

= 0 (6)

and the boundary conditions imposed by the rollers on the torso module where the beam must deflect
by Δ

F(1) = Δ, (7)

and
32 F(1)
3 D2 = 0 (8)

since the rollers cannot apply a reaction moment. The moments and shear forces the slender bent beam
applies to the pelvis (I = 0) and torso (I = !) modules are evaluated using the spline F(D) and an
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Euler-Bernoulli beam model where

" (D) = −�� 3
2 F(D)
3 D2

(
3 D

3 I

)2
(9)

and

((D) = −�� 3
3 F(D)
3 D3

(
3 D

3 I

)3
. (10)

Figure 2. The human as an 11-segment, 13-DOF model and the attachment points to the 6-segment, 8-DOF exoskeleton. Dashed lines
indicate the kinematic constraints between the exoskeleton and the human, as well as the human and the box. The feet are constrained to the
ground throughout the motion whereas the box is constrained to the ground until lifted by the human.The letter  denotes a coordinate
system where the subscripts �, � , � and 0 correspond to the coordinate systems of the box, human, exoskeleton and global reference
frames, respectively. The planar positions are indicated with G and I and angles by Θ. A close-up of the lumbar spine model depicts the L1 to
L5 lumbar vertebrae and the four constraint equations that couple the movements of the joints. Each disk is approximated as a spherical joint
located at the center-of-rotation identified by Pearcy and Bogduk 1988 from radiographic data. We have scaled the center-of-rotation of each
vertebrae to fit the high resolution meshes of the lumbar vertebrae of Mitsuhashi et al. 2009.

2.5. Optimal Control Problem Formulation
We divide the task of lifting a box from the floor into three phases for both human-only and human-
with-exoskeleton OCPs (Fig. 3): first, the model moved from a standing phase to touching the box;
second, the model applies force to the box until the full weight of the box is supported; finally, the
model lifts the box and stands back up again. We use a series of constraints to ensure that contact forces
are physically realistic and the beginning and end poses are comparable. The forces in the global eZ
direction are constrained to be positive, while friction forces must be within the friction cone. Similarly,
tangential forces between the hands and the box are also constrained to be within the friction cone, as
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would be case if the lift is being performed with an open grip. Finally, we constrain the model to begin
and end the lift at rest and in the same starting and ending pose as the human participant.

For the simulations that include an exoskeleton, we have additional constraints to limit the inter-
action forces between the human and the exoskeleton. We solve both problems using a direct
multiple-shooting algorithm implemented in MUSCOD-II (Bock et. al., 1985, Leineweber et al., 2003).

In this work we formulate a multiphase optimal control problem that minimizes the Legrange term

<8=G,D, ?

#−1∑
8=0

( ∫ C8+1

C8

Φ8
(
x(C), u(C), p

)
3C

)
(11)

which includes the control vector D(C) which is composed of the joint torques of the human model and
the actuator control signal of the exoskeleton, and the state variables vector G(C) which contains the
positions and velocities of the multibody system segments. The vector ? stands for physical parameters
such as exoskeleton and 8 iterates through the multiple phases of the problem through time t from C> to
C# . The dynamics of the systems (Equations 1 & 2) take the form of ordinary differential equations

58 (G(C), D(C), ?) = ¤G (12)

that are limited by equality and inequality constraints

A4@ (G(C>), D(C>), ..., G(C# ), D(C# ), ?) = 0 (13)

A8=4@ (G(C>), D(C>), ..., G(C# ), D(C# ), ?) ≥ 0, (14)

at specific time points throughout the separate phases. The time vector is broken up into N consecutive
time intervals

C ∈ [C8 , C8+1], 8 = 0, ..., # − 1 and C> < C1 < ... < C# (15)

Figure 3. We formulate lifting as a three phase problem: standing to touching the box, touching the box to lifting the box and finally lifting
the box to standing back up again with the box. Image sequence taken from the LSQ human-with-exoskeleton OCP.

2.5.1. Least-squares quadratic fitting (LSQ)
To find solutions that mimic the human participant’s lifting technique we solve a least-squares problem.
For both human-only and human-with-exoskeleton formulations, the least-squares problem has two
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terms: a tracking term

Φ8
(
q(t), q(C), g(C), u(C)

)
=

"8∑
<=0
| | qH (C8< ) − qREF (C8< ) | |22 (16)

and a term

F1

∫ C8+1

C8

| | ūALL | |223C + F2

∫ C8+1

C8

(D<>C>A )23C (17)

to ensure that the exoskeleton is used during the human-with-exoskeleton simulations. We include a
small regularization on the exoskeleton’s motor torque so that the exoskeleton is not unnecessarily used.
" denotes the number of shooting nodes for the given phase 8, and @� and @'�� are the computed and
tracked positional coordinates, respectively. The vector @'�� , is a function of time that comes from
using inverse-kinematics to pose the model so that it’s virtual markers minimize the squared distance to
the recorded positions of the markers on the participant. The vector ūALL is the the normalized human
joint torques vector, and D<>C>A is the control signal of the motor which is used as a regularization term.
F1 and F2 have a value of 0.02 and 1G10−9 respectively.

2.5.2. Synthesizing li�ing techniques with a lower risk of injury
We synthesize three lifting motions that minimize the risk factors associated with low-back injury:
CLBL, PLBL, and a weighted sum of both CLBL and PLBL. When analyzing experimental data, the
CLBL is calculated as

�!�! =

∫ )

0
g!5/(13C (18)

as described by Coenen et al. 2013. Although equation 18 is perfectly suited for analysis, it is ill-suited
as a cost function for an optimal control problem because it is signed: it is possible for the model to
produce a flexion torque and thus reducing the CLBL after lifting. Instead, we integrate the normalized
torque of the lower back squared

�!�!2>BC =

∫ C8+1

C8

| | ūlum | |2 3C. (19)

Squaring the the lumbar torques has been suggested by Coenen et al. 2012 to put a bit more emphasis
of the CLBL result on higher loads. We have also normalized these values according to the maximum
torque output of these joints (g<0G) so that their value remains between 0 and 1, to avoid numerical
scaling problems that occur with either very big or very small numbers. Since the motion of the 5
vertebrae are coupled by 4 constraint equations, it is possible to drive the lumbar spine using only a
subset of the joints, but this is physiologically unrealistic. By summing across the moments developed
by each joint, we ensure that the final load distribution does not favour one vertebra at the expense of
the other joints.

When analyzing experimental data, the PLBL is evaluated as

max(g!5/(1 (C)) (20)

over a time duration of interest (Coenen et al. 2012). Both Coenen et al. and Jäger et al. 2013 have
suggested instead to evaluate PLBL risk by integrating the L5/S1 moment over time but raised to a
higher power to further penalize peak values. To find motions that reduce PLBL risk, we minimize the
sum of normalized lumbar torques

%!�!2>BC =

∫ C8+1

C8

| | ūlum | |4 3C (21)
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raised to the power of 4.
Finally, we consider a third cost function which is simply the sum of these two cost functions

�.�2>BC =

∫ C8+1

C8

| | ūlum | |22 +
∫ C8+1

C8

| | ūlum | |42 3C (22)

in hopes of finding a motion that is able to reduce both risk factors simultaneously. In all cost functions
we include a small regularization term that includes all joint torques

F

∫ C8+1

C8

| | ūALL | |22 3C (23)

to ensure that the result is a minima (Nagarajan and Kolter, 2017). The weight factor, F takes the value
of 10−3.

2.6. Evaluation
We use the following procedure to evaluate our results:

• We compare the peak lumbar load and maximum lumbar flexion angles of our participant to the
values reported in the literature (Kingma et al. 2004) where 10 participants performed a stoop-squat
lift with a 10.5 kg box.

• We report CLBL and PLBL which we have calculated according to Coenen et al. (2013), for each
of the prediction simulations and dynamic reconstruction problems.

• We report the results for the four study blocks: human-only with tracking (LSQ); human-only with
improved lifting technique; human-with-exoskeleton with tracking; and human-with-exoskeleton
with improved lifting technique.

3. Results
Simulated improvements to lifting technique were able to reduce the CLBL and PLBL risk factors
for the unassisted lifts (Table 1, Figures: 4, 5(A) and 6(A)). The experimental participant performed
a stoop-squat lift with a peak torque of 210 Nm and a cumulative torque of 243 Nms (Table 1, Fig.
5) according to the dynamic reconstruction, close to the peak torque range reported by Kingma et al
(2004) of 199 ± 12 Nm. These simulation results indicate that training can produce modest reductions
in PLBL, and larger reductions in CLBL (Table 1 and grey bars in Fig. 4).

Table 1. CLBL and PLBL torques for both human-only and human-with-exoskeleton simulations for the 4 different OCPs. The
LSQ entry is the reference used for comparison purposes, by tracking the motions of the experimental participant.

OCP CLBL (Nms) PLBL (Nm)

Human Only Human with Exoskeleton Human Only Human with Exoskeleton

LSQ 243 217 210 177
�!�!2>BC 130 121 195 165
%!�!2>BC 210 193 176 138
�.�2>BC 190 148 182 148
0Note that CLBL and PLBL have different units, as CLBL is torque as a function of time where PLBL is the torque at a specific point in time. All
values rounded to 3 significant figures.
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Larger reductions in both CLBL and PLBL can be observed in the human-with-exoskeleton OCPs.
While it was not possible to reduce the PLBL in the human-only simulation by more than 16.2%, the
exoskeleton was able to achieve a 34.3% reduction (Table 1 and white bars in Fig. 4) when looking at
the %!�!2>BC metric. In addition, the exoskeleton was able to reduce further both CLBL and PLBL
in all cases when compared to the human-only simulations (Fig. 6). While the overall trend in torques
for the various solutions appears to be similar in both unaided and aided motions, phase 2 does not
follow this pattern. The drop in torque during the human-only simulations at the end of phase 2 (Fig. 6)
happens as a result of a rapid counter movement: just prior to lifting the box the model relaxes and drops
the hips. During the exoskeleton assisted lifts, the model does not exploit this technique presumably
because the exoskeleton’s support makes this counter movement less effective.

The lumbar flexion angle closely tracked the participant data in the LSQ solution (Appendix B, Fig.
9) and was substantially reduced when the model was free to move. The dominant factor for the peak
lumbar flexion angle appears to be the cost function as there is little difference between the lumbar
flexion angles of the human-only and human-with-exoskeleton lifts. Curiously, all the minimization
cost functions for the human-only condition result in a lower lumbar flexion angle in phases 1 and 2
(Fig. 7), whereas for the same phases in the human-with-exoskeleton condition, the exoskeleton seems
to be increasing the lumbar flexion angle of the human. In addition, we can see that the �!�!2>BC
results in the fastest lifts (Table 2), since cumulative load accumulates over time.

Figure 4. Bar plot representing normalized lumbar torques about the L5/S1 joint from simulations of (A) Cumulative low back loads and (B)
Peak low back loads. Shaded bars refer to human-only and white bars to human-with-exoskeleton OCPs. The torques are normalized
according to the L5/S1 joint torque from the result of the human-only tracking (LSQ) OCP. Numbers on top of bars indicate the value of the
normalized torque, relative to the human-only LSQ of value 1.

Table 2. Phase durations (in seconds) for all three phases for all OCP formulations.

OCP Human Only Human with Exoskeleton

Phase 1 (s) Phase 2 (s) Phase 3 (s) Total (s) Phase 1 (s) Phase 2 (s) Phase 3 (s) Total (s)

LSQ 1.34 0.12 1.42 2.88 1.34 0.12 1.42 2.88
�!�!2>BC 1.21 0.14 1.00 2.35 1.60 0.14 1.06 2.80
%!�!2>BC 1.22 0.14 1.19 2.55 1.60 0.14 1.31 3.04
�.�2>BC 1.25 0.14 1.19 2.58 1.53 0.14 1.10 2.77

4. Discussion
The risk of low-back injury can be reduced by improving lifting technique and by using an exoskeleton
(Toxiri et al., 2019). Two of the biomechanic metrics that have been associated with the risk of injury
to the lower back are CLBL and PLBL. In this study, we used simulation to examine how effective
training, and an exoskeleton, are at reducing the CLBL and PLBL during a stoop-squat lift of a 10 kg
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Figure 5. Models of (A) human-only and (B) human-with-exoskeleton at the moment of lifting the box for all objective functions. The shaded
regions in the background resemble a stacked bar plot, indicating the time (s) of box lift-off with the respective peak torques (Nm) and lumbar
flexion angles (>) achieved at the point of lifting the box, for every model separately, with all the values indicated in the respective boxes.

Figure 6. L5/S1 torques for (A) Human-only and (B) Human-with-exoskeleton as calculated for the biomechanic metrics of CLBL and
PLBL. The shaded region in the human-only plot reports the values measured in literature (Kingma et al., 2004) for net lumbar torque. The
phases of the minimization problems were scaled according to the experimental phases for easier graphical comparison.

Figure 7. Lumbar flexion angles for (A) Human-only and (B) Human-with-exoskeleton as resulted from the tracked and optimized
stoop-squat motion. The shaded region in the human-only plot reports the values measured in literature (Kingma et al., 2004) for net flexion
angle. The phases of the minimization problems were scaled according to the experimental phases for easier graphical comparison.

box. We then compare the contributions of the improved technique alone, and with the exoskeleton
assistance, to the human-only reference motion that we have reconstructed from motion capture data.
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The cost functions we use do not only change the motion of the human in order to decrease the risk of
injury, but they affect the way the exoskeleton supports the human as well, in order to help decrease the
risk of injury.

We have had to make simplifications to our model because the human body, the exoskeleton, and
the interaction of two, are complex. We have ignored the effects of muscles and muscle dynamics. This
simplification is reasonable under the assumption that the human is performing a sub-maximal lift and
is not at the limits of the participant’s flexibility, force or speed. By creating three hypothetical lifting
techniques using �!�!2>BC , %!�!2>BC , and �.�2>BC we assume that humans can actually be trained
to minimize these risk factors. We have also included limits on the interaction forces (Appendix A,
8) under the assumption that the exoskeleton is comfortable to use if these limits are met. While we
have imposed human-exoskeleton interaction force limits (see Appendix A) it remains unclear how
interaction forces will affect the motion of the human.

The human-only L5/S1 peak moments compare well (176 - 210 Nm) to the ones reported by Kingma
et al. 2004 (187 - 211 Nm) (Fig. 6(A)), as well as the peak lumbar flexion angles (Fig. 7). In a study
by Lavender et al. (2002), 265 participants were trained to perform a lift of a 12 to 13 kg box to
improve their lifting technique. The peak moment varied from 225 Nm to 178 Nm throughout the
training period. In relation to our human-only simulation of lowering the PLBL, we can see that this
reduction is similar to the reduction in PLBL in our %!�!2>BC human-only simulations as the human-
only reference motion has a PLBL of 210 Nm and %!�!2>BC human-only OCP minimizes this to
176 Nm. De Looze (2016) et al. reports similar peak moment reductions of 19.5% and 15% when
participants use the PLAD (Abdoli et al. 2006) and BNDR (Wehnder et al. 2010) exoskeletons. In
contrast, Koopman et al. (2020a) reports a 5 to 10% reduction in peak moments when using the Laevo
exoskeleton. In the context of active back-support exoskeletons, the XoTrunk exoskeleton (Lazzaroni
et al. 2020) achieves a peak moment reduction of 17%. The passive SPEXOR exoskeleton, produced
a maximum of 23 ± 3% reduction in the peak L5/S1 extension moment (Koopman et al., 2020b) for
ten subjects using different lifting techniques, including exoskeleton assistance. Using our simulations
based on the active SPEXOR exoskeleton, we predict a reduction of 21.4% (according to the CLBL
cost function) to 34.3% (according to the PLBL cost function).

5. Conclusion
Our simulations indicate that improving the lifting technique alone can reduce the CLBL from 243 to
130 Nms, but only modestly reduces the PLBL from 210 to 176 Nm. When the SPEXOR exoskeleton is
used without any alteration to the person’s lifting technique the CLBL is reduced from 243 to 217 Nms,
while the PLBL is reduced from 210 to 177 Nm. The biggest reduction in both CLBL and PLBL are
realized when both the SPEXOR exoskeleton and improved lifting technique are used together where
the CLBL is reduced to 121 Nms and the PLBL to 138 Nm. While all of the three cost functions we
examined reduced the risk factors for back injury, the HYB cost function offered the most balanced
reduction of both the CLBL (38.3%) and the PLBL (28.6%). Thus, improvements to lifting technique
alone may be a suitable intervention for people who infrequently lift light loads. However, in more
demanding tasks, an exoskeleton should be considered since it is more effective than the technique
alone at reducing both the cumulative and peak loads experienced by the low back.
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A. Interaction Forces

Figure 8. Interaction forces for human-with-exoskeleton prediction OCPs. Values shown correspond to normal and shear forces, and for
moments about the three attachment points: pelvis, torso and thigh. Interaction force limits are also reported .
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B. LSQ Validation

Figure 9. Lumbar flexion angles for the inverse kinematics (IK) solution obtained from motion capture vs. human-only (HO) LSQ OCP and
human-with-exoskeleton (HwE) solutions from our OCPs. This serves as a validation of our dynamicreconstruction procedure, as to show the
close correlation between our solution and the inverse kinematics data from the motion capture..
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